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ABSTRACT

Sign language translation is a challenging problem in natural language processing. Its principle 
involves machine translation from sign language images to spoken language text. Designing a good 
translation is not a trivial task since there are a large number of both input image pixels and output 
classes. We propose the deep learning model to translate static gestures of Thai sign language
(TSL) to the corresponding Thai spoken words. The main objective is to design a compact model 
that delivers high performance so that it can be implemented on mobile devices. Several mobile 
convolutional neural networks (CNN) are investigated to find the best backbone architecture. We 
also attach additional layers to the selected CNN architecture to fine-tune its performance.  The 
experiments on the dataset collected from twenty-four volunteers indicate excellent results; in terms 
of precision, recall, and f1-score, of the proposed model. The comparisons with the state-of-the-art
models and the feature visualizations from convolution layers endorse its effectiveness.

Keywords: Deep Learning, Convolutional Neural Network, MobileNet Model, Language Translation, 

Thai Sign Language.
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1. INTRODUCTION

Sign language is a visual communication that uses arm/hand gestures to convey meaning among deaf 

and hearing-impaired people. They are not universal, although some of them are similar. Deaf people 

who understand one sign language may not readily understand other sign languages without prior 

knowledge or effort. Sign language translation is a challenging problem because it is an attempt to solve 

a problem by using multiple research fields, e.g., image processing, feature engineering, machine 

learning, natural language processing, etc.  In 2018, there are about 375,680 deaf individuals in 

Thailand as reported by the Ministry of social development and human security. These people possess 

abilities to work in the same environment as other people and deserve a right to communication. 

Therefore, providing a tool allowing them to convey sign language to the hearing community is in need. 

There are various efforts to translate sign languages ranging from using sensory devices to deep 
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learning architecture. We will mention them in chronological order. Saengsri et al. (2012) propose a 

TSL recognition system by applying data gloves and motion tracking sensors. They improve the 

accuracy to recognize finger-spelling Thai alphabets by utilizing data segmentation and a neural

network model. Rahaman et al. (2014) present the Bengali Sign Language prediction by applying the 

K-Nearest Neighbors classifier to the binary images of hand signs. Their experimental results indicate 

high recognition for both vowels and consonants. Adhan and Pintavirooj (2016) attach 6 sphere markers 

to a black glove and use a two-layer neural network to recognize 42 alphabets in TSL. Although their 

method achieves good performance, recognition of some alphabets needed to be improved since 

accuracies significantly drop. Pariwat and Seresangtakul (2017) recognize 15 Thai finger spelling 

alphabets by using SVM. They extract local and global features from the input finger image and feed 

them to the SVM classifier. The experimental results indicate that the RBF kernel function with the 

mixture of local and global features delivered the best accuracy among other functions. Jani et al. (2018) 

invent a hand glove by using Arduino and Raspberry Pi boards. Inputs from five flex sensors, an 

accelerometer, and a gyroscope are fed into a simple module to predict the English characters of 

American Sign Language. Rao et al. (2018) recognize selfie images of Indian sign language by the 

convolutional neural network (CNN). Four convolutional layers with different kernel sizes of 16×16, 9×9, 

5×5, and 5×5 work best for their dataset. Their CNN model achieves a fairly high recognition rate 

compared to other off-the-shelf classifiers. Lim et al. (2019) combine the hand tracking method with pre-

trained CNN to characterize the hand models. They use hand energy images to serve as a compact 

hand representation. According to the experimental results on the American sign language and sign 

language lexicon video corpus datasets, their method achieves good recognition in terms of accuracy.

Sripairojthikoon and Harnsomburana (2019) propose TSL prediction by using a 3D CNN to extract both 

temporal and spatial features from Thai sign language vocabulary. Its input layer contains a stack of 

continuous video frames with a size of 64x64x15 from Microsoft Kinect. According to their experimental 

comparison of different numbers of frame depths, the suitable value that produces the best accuracy is 

15. Xie and Ma (2019) utilize the Resnet50 CNN model to develop American sign language recognition. 

High-level features are efficiently captured by their model. Signal strengthen components are applied 

during the training period to improve the model’s generalization. The experimental results on static sign 

words show superior accuracy over other pre-trained models. Wadhawan and Kumar (2020) apply a 

custom CNN architecture to recognize 100 static manual words of Indian sign languages. Their CNN 

model composes of 5 convolution layers, 2 dense layers, and 1 softmax layer. However, the number of 

trainable parameters in the CNN model is too large and inappropriate to apply to a mobile device with 

small computing power. Adithya and Rajesh (2020) propose the CNN architecture composed of 3 

convolution layers and one of each softmax and dense layer to recognize hand postures. Their 

experimental results on the NUS hand posture dataset and the American fingerspelling dataset indicate 

high recognition accuracy. Wangchuk et al. (2021) present the CNN model which composes of 6 

convolution layers to classify 10 static digits of Bhutanese sign language. Batch normalization, dropout, 

and early stopping are used to avoid overfitting problems. The experimental result indicates that their 

method and LeNet5 pre-trained model perform better than other non-CNN algorithms. Tornay et al. 

(2020) invent a multilingual sign language by using Kullback-Leibler divergence HMM. They 
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demonstrate this through an inspection of Turkish, Swiss, and German sign languages. According to 

their experimental result, a multilingual sign language recognition system can be efficiently implemented 

by using pooling resources from multiple sign languages. Phothiwetchakun and Rakthanmanon (2021) 

present a two-level approach to Thai fingerspelling recognition. They represent hand images with 

merely 21 points per hand by using hand landmarks. Similar hand gestures are discriminated by using 

key point clustering as a two-level classifier. Evaluation of one-stroke Thai fingerspelling datasets shows 

good performance on unseen data. Chaikaew et al. (2021) compare the accuracy among GRU, Bi-

LSTM, and LSTM to recognize TSL. Their experimental results show that LSTM has the highest 

accuracy on the test data.

In this paper, we approach another aspect of TSL. Our goal is to invent a compact TSL translator which 

can be easily embedded in the mobile application. We propose a compact CNN architecture that still 

produces high performance of recognition in terms of accuracy, precision, recall, and f1-score. The 

experimental results on the 100-class dataset collected from 24 volunteers show significantly higher 

performance compared to state-of-the-art approaches and other pre-trained CNN models. Our TSL 

dataset composes of 12000 images equally distribute over 100 Thai words used in daily life. The main 

contribution of this research is a quest for a compact-size and effective CNN architecture that can be 

applied to a mobile application for predicting static gestures of TSL.

We organize this paper into 6 sections. Section 2 explains central knowledge and existing pre-trained 

CNN models related to the proposed method. Sections 3 and 4 describe the Thai sign language dataset 

and the proposed model. Section 5 presents the experimental results and comparisons with other 

techniques. Finally, a discussion and conclusion, including a possible improvement of the proposed 

method are provided in section 6.

2. RELATED WORKS

We provide fundamental knowledge and briefs of all works related to our research in this section.

2.1. Thai sign language
The Ministry of Thai Education has designated TSL as the national sign language for Thai deaf people 

since August 1999. According to (Boonya, 2008), about 52 percent of words in TSL is adopted from 

American sign language when the first deaf education program as established in 1951 at a public school 

in Bangkok. There are minor variations of TSL depending upon different regions, gender, and age 

although they share most words in common. In spite of having a lot of Thai sign words, most deaf people 

feel difficult to express technical terms or new-emerging phrases. They also expect a sign language 

comprehension from normal hearing people, at least common words in daily life.

2.2. Convolutional neural network (CNN)
CNN is a well-known and widely used model in deep learning. It was inspired by brain’s visual cortex 

that responds to stimuli in a restricted region of the receptive field. CNN is a great leap forward because 
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it can vastly reduce a huge number of parameters and the vanishing gradient which are two major 

problems in training a multilayer neural network (Bengio, 2016). Since our objective is to design a 

compact CNN for TSL translation application on mobile device, variations of MobileNet architecture are 

explained in the following subsections.

2.3. MobileNet
Howard et al. (2017) introduced the first version of MobileNet for mobile and embedded vision 

applications. Its lightweight deep architecture is based on depth-wise separable convolution. This kind 

of layer decomposes a normal convolution into point-wise and depth-wise convolutions. After a filter is 

applied to each input channel, a 1×1 convolution in the point-wise layer joins the depth-wise layer’s 

outputs. This factorization can significantly reduce the cost of computation and the model size. The 

balance between latency and accuracy of MobileNet can be adjusted by its two parameters, i.e., width 

and resolution multipliers. MobileNet was investigated by applying it to different applications, e.g., 

geometric localization, fine-grained recognition, person recognition, and face embedding. MobileNet 

demonstrates promising accuracy on those tasks and drastically reduces the number of parameters 

compared to other existing pre-trained CNN models.

2.4. MobileNetV2
Sandler et al. (2019) launched the second version of MobileNet called MobileNetV2. The successor 

improves the performance of MobileNet by largely reducing unnecessary computations and memory 

requirements. Moreover, MobileNetV2 still retains the same recognition accuracy as its ancestor. The 

secret behind the success is the inverted residual module. It contains a special residual module that 

converts a low-dimensional input into a high-dimension output. After a depth-wise convolution, the 

resulting signals are linearly convolved back to low-dimensional features. In general, this module 

provides the ability to separate the network expressiveness from its capacity making it suitable for 

mobile applications.

2.5. MobileNetV3
Howard et al. (2019) proposed MobileNetV3 to optimize the accuracy-latency trade-off on mobile 

devices. NetAdapt algorithm is applied to search the optimal number of filters per layer. They improve 

the network architecture by redesigning the layers which have expensive computation in the network.  

The nonlinearity of the network is also changed to the h-swish function. They introduced two variations 

called MobileNetV3Large and MobileNetV3-Small to target high and low-resource machines, 

respectively. The experimental results on ImageNet indicate the superior Top-1 accuracy of 

MobileNetV3Large over MobileNetV3Small. Interestingly, the performance of MobileNetV2 positioned 

in-between MobileNetV3Large and MobileNetV3Small in terms of both accuracy and the number of 

parameters.

3. THAI SIGN LANGUAGE DATASET
We create the static sign dataset from 24 volunteers who express each word by slightly different 
gestures, e.g., hand positions, left or right hand.
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Figure 1. Samples of static sign for the word “one” from 24 volunteers.

Figure 2. The complete static signs of 100 words.
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The dataset composes of 12000 color images equally distributed over 100 classes (words). Each color

image has a size of 224×224 pixels and was taken on a light-color background under adequate light.

Figure 1 shows 24 samples of static signs for the word “one”. Although the faces of volunteers in Figure 

1 are blurred for their privacy, the images used in the experiments do not contain any closure. The 

complete static signs of 100 words are given in Figure 2 with the consent of the corresponding author 

for his face disclosure. By taking a glance at the static signs in Figure 2, there are many similarities 

between different words. For example, {“buffalo”, “cow”}, {“angry”, “hair”}, {“meditate”, “serve”, 

“wedding”}, {“glass”, “milk”}, {“lie prone”, “lie still”}, {“now”, “ride bike”}, {“water”, “zero”}, {“hotel”, “noon”, 

“ginger”, “elbow”}, {“tilapia”, “prevent”}, {“teeth”, “tongue”}, and words representing digits 0–9. It is 

noticeable that finger features are very important to the classification process.

4. PROPOSED MODEL

As a convention in transfer learning, we attach extra layers to a backbone pre-trained model. The output 

signals from the pre-trained model are flattened and average pooled. Afterward, four consecutive series 

of batch normalization and dense layers are attached in order as shown in Figure 3.

Figure 3. Proposed model.

Figure 4. Validation accuracies of three pretrained MobileNets.

We conduct a preliminary experiment to find the best mobile CNN architecture for TSL translation. 
12000 instances of the dataset are decomposed into portion of (70:10:20) for (training set: validation 
set: test set). Three recent models of MobileNet, e.g., MobileNetV2, MobileNetV3Small, and 
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MobileNetV3Large, are investigated on a preliminary run for 10 epochs. For simplicity, we use Adam 
optimization and 0.001 learning rate for all models. The preliminary results in Figure 4 indicate that three 
architectures of MobileNet are competitive in validation accuracy. Although MobileNetV3Large 
possesses the best performance, its size is double compared to other candidates. Hence, we eliminate 
MobileNetV3Large due to its unsuitable size for implementation on a mobile application. According to 
(Silva et al., 2021; Bhalgat et al., 2020), MobileNetV3Small architecture may encounter unstable 
problems from the h-swish activation function. Besides prediction performance and the model’s size, 
the stability of the mobile application during runtime is another important feature that we pay attention 
to. As a result, we employ MobileNetV2 as a backbone of CNN based on its stable output, high 
validation accuracy, and compact size. Although MobileNetV2 has been chosen as a backbone of the 
proposed model, we also compare the results with other variations by substituting the backbone with 
other MobileNet architectures in the experimental section.

5. RESULTS

We conduct all experiments on the same PC with the following specifications: Intel Core i9-9900K, 
DDR4 64GB, SSD 500GB, and RTX2080 graphic card. To understand the difficulty in classifying the 
dataset, we randomly select 10000 images over 100 classes and plot the distributions of the three most 
important components of pixels in the image from Principal Component Analysis (PCA). Different colors 
in Figure 5 represent variations of classes in the dataset. Classification is very hard to accomplish since 
there are many overlapped classes. We found that the hardest part in classifying the dataset is the 
ability to capture features from fingers. Later in the discussion section, we demonstrate that the 
proposed model can correctly capture fingers which are essential features to distinguish similar 
gestures from different classes.

Figure 5. PCA plot for class distribution.

5.1. Experimental Results
Having 120 images per class may not be enough for training the deep learning model. We perform 
augmentation by adjusting brightness within (0.20, 1.20), rotation within (-10, +10), zoom within (1, 1.20), 
and flipping horizontally. As a result, the augmented dataset contains 114000 images uniformly 
distributed over 100 classes. The proportion for separating the dataset is 70% for the training set, 20% 
for the validation set, and 10% for the test set. The training conditions are listed as follows. Batch size:
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128, loss function: sparse categorical cross entropy, metric: sparse categorical accuracy, learning rate: 
0.001, and optimizer: Adam. To avoid the overfitting problem, we early stop the training when the 
validation accuracy cannot improve more than 0.01% within 10 epochs.

Figure 6. Training progress of the proposed model.

Figure 7. Precision (P), Recall (R), and F1-Score (F1).

Figure 6 illustrates the training progress of the proposed model. It learns patterns quickly as the training 
loss suddenly drops during the early period. The training process stops at the 39th epoch since there 
is no improvement in the validation accuracy within 10 epochs. Figure 7 shows results of precision, 
recall, and f1-score for each class in the test dataset. In every class, the proposed model produces high 
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relevancy on all predictions. It also attains a high ratio between relevant predicted instances and all 
relevant instances. As a result, f1-scores for all classes are impressively high. Moreover, 13 out of 100 
classes are easy to classify since the proposed model achieves a perfect f1-score. The most difficult 
word which has the lowest f1-score, but still has a high value, is “seven”. It is a three-finger gesture that 
is similar to those of the words “eight”, “nine”, “six”, and “three”. This result implies that finger gestures 
play an important role in TSL classification. Appropriate CNN architecture needs to capture these 
important features and maintain them throughout deep convolution layers. In the discussion section, 
we visually illustrate the convolution filters and the activation images from various convolution layers to 
demonstrate that the proposed method can handle important features from the image very well.

Figure 8. Confusion matrix.
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To visually understand a summary of prediction results on classification, the confusion matrix is 
illustrated in Figure 8. The matrix indicates almost perfect results of the proposed method as entries on 
the main diagonal contain strong intensity indicating a high degree of matching between predictions 
and ground truths.

5.2. Experimental Comparisons

The comparison of the training progress among models is illustrated in Figure 9. We represent each 

work by the surname of the first author appeared in the paper for the sake of convenience; Wadhawan: 

(Wadhawan et al., 2020), Rao: (Rao et al., 2018), Xie: (Xie and Ma, 2019), and Masood: (Masood et 

al., 2018). To prevent models from overfitting problem, the stopping criterion for all models is to early 

stop when the validation accuracy improvement does not exceed 0.01% within 10 consecutive epochs. 

Three MobileNet architectures spend around 39 – 45 epochs for weight training while Wadhawan, Rao, 

Xie, and Masood take 86, 33, 69, and 95 epochs, respectively. Both loss and accuracy of most models 

vary similarly during the training period, except for those of Xie which produces ripple results. MobileNet 

architectures swiftly learn the dataset within a few epochs and gradually improve loss and accuracy in 

the later period while other models slowly learn the dataset.

Figure 9. Comparison of training progress among seven methods.

The comparison of test accuracy, total parameters, and size among models is shown in Table 1. 

MobileNet architectures and Masood model achieve competitive and considerably high accuracies. 

However, Masood and MobileNetV3Large models contain a significantly larger number of parameters 
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and model size making them inappropriate for implementing on a mobile application. MobileNetV3Small 

looks competitive with the proposed method in terms of both accuracy and size. However, an unstable 

issue of its accuracy loss from h-swish activation may malfunction during runtime. As a result, the 

proposed model is the most suitable representative of the MobileNet architecture.

Table 1: Test accuracies of four methods.

Model Test accuracy Total parameters Size (MB)

Proposed (MobileNetV2) 97.32 2,640,484 13.81
MobileNetV3Small 97.39 1,845,908 10.39
MobileNetV3Large 98.04 4,608,932 21.83

Wadhawan 91.82 4,073,588 15.94
Rao 95.11 6,749,476 26.40

Xie (ResNet50) 92.12 33,623,012 210.26
Masood (VGG16) 98.02 17,223,588 67.35

To have the in-depth analysis beyond test accuracy, comparisons on precision, recall, and f1-score of 

all models are given in Figure 10, 11, and 12, respectively. Both proposed and Masood models are 

competitive in classifying unseen data. Their predictions are so accurate as graphs hardly drop. 

Conversely, Wadhawan and Xie models have poor results on precision, recall, and f1-score for over 

ten classes. Another fact that can be concluded from Figures 10 – 12 is that the performance of most 

models drops in digit classes, e.g., two, three, four, five, six, seven, eight, and nine, since hand gestures 

from those classes are very similar. Therefore, having an extra mechanism that takes special care of 

finger features is essential for better recognition.

Figure 10. Comparison of precision.
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Figure 11. Comparison of recall.

Figure 12. Comparison of f1-score.

6. DISCUSSION AND CONCLUSION

We provide a concrete example showing that the proposed model can captures crucial features from 
fingers in the input image. We visualize patterns that responded to CNN filters in our model compared 
to those from other approaches. Similar to the deconvolution network in (Zeiler and Fergus, 2014), we 
reconstruct an approximate version of the features from the convolutional layer by creating an input 
image that maximizes the activation of each filter to see the pattern that it responds to. Figure 13 shows 
pattern visualizations from the first 9 filters of the deep convolution layer before passing the activations 
through dense layers. According to a visualization technique (Zeiler and Fergus, 2014), filters in deeper 
layers capture delicate patterns from the previous activation. The area of the filter which does not 
respond to the input activation generates black or grey blobs without any pattern or texture, i.e., dead 
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features. This incorrect representation happens due to an inadequate sampling rate. It is perceptible 
from Figure 13 that Wadhawan, Rao, and Xie models contain dead features resulting in mispredictions 
on the input image as shown in Figure 14. They cannot preserve important finger features and predict 
wrong results. On the other hand, the proposed and Masood models do not contain any dead features. 
They extract essential features, as shown in Figure 14 that all three fingers are still preserved, before 
transferring them to the dense layer resulting in a superior prediction result. It is worth noting that 
activations in Figure 14 are derived from applying filters in Figure 13 to the corresponding activation in 
the previous layer. In addition, activation sizes in Figure 14 from all models are approximately the same.

Figure 13. Filter visualization from the deep convolution layer.

Figure 14. Activation visualization of the deep convolution layer.

Although the proposed and Masood models are competitive in performance, the proposed model is

about five times smaller than Masood model. As a result, our model is suitable for learning the TSL 

dataset on a mobile application that requires low memory and computing power consumption.

 International Journal of Artificial Intelligence

Int. J. Artif. Intell. 41 ISSN 0974-0635



In conclusion, we propose a compact deep learning model for TSL translation that can be applied to 
the mobile application. Our model not only attains excellent recognition performance but also holds a 
reasonably low number of parameters, hence a small-size model. We employ MobileNetV2, which is 
more stable than other MobileNet models, as the backbone and attach it with four series of batch 
normalization and dense layers. The experimental results on the 100-class dataset collected from 24 
volunteers indicate superior accuracy, precision, recall, and f1-score of the proposed model over four
state-of-the-art approaches. The feature visualization from the activation of convolution layers indicates 
that the proposed model can preserve essential features from fingers throughout the convolution path. 
One possible future work is to invent a more advanced technique for finger extraction to improve the 
digit prediction (0–9) which seems to be the most difficult classification among all classes.
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