International Journal of Artificial Intelligence,

ISSN 0974-0635; Int. J. Artif. Intell.

2024, Volume 22, Issue Number 2

Copyright © 2024 [International Journal of Artificial Intelligence]

Intuitionistic Fuzzy Set Characteristic Analysis with
Lexicographical Vector Lattice Structure

Sanghyuk Lee', Youpeng Yang?

'School of Engineering, New Uzbekistan University,
Tashkent, Uzbekistan
Email : l.sanghyuk@newuu.uz

2School of Advance Technology, Xi'an Jiaotong-Liverpool University,
Suzhou, China
Email : youpeng.yang19@student.xjtlu.edu.cn

ABSTRACT

The similarity measure design for the different patterns has been proposed based on the information
characteristic analysis and the distance measure. Analysis of fuzzy sets (FSs), intuitionistic fuzzy
sets (IFSs), and Pythagorean fuzzy sets (PFSs) and characteristics comparison between them also
have been carried out with membership and non-membership degrees. Each degree of FSs, IFSs
and PFSs is illustrated through figures, and its characteristics are analyzed. The existing similarity
measures are also explained and compared for each fuzzy set. The proposed similarity can be
applied to all membership and non-membership points satisfying 0 < u(x) < 1and 0 < nu(x) < 1.
Similarity measure has been designed for the membership and non-membership degree separately,
and it constitutes a 2-dimensional component Together with two degrees, it is emphasized that the
hesitation has relation with the similarity design. With the consideration of membership and non-
membership degree, each similarity measure component is integrated as the ordered sets.
Similarity measure integration with two measures provides several analysis outcomes; magnitude,
1-norm, and inner product with respect to 45° line. The obtained results can be included in the
ordered set, and a lattice structure is proposed on the similarity measure. Additionally, the Cartesian
product structure is organized for two similarity measures with the help of vector lattice structure.
With the illustrative example, it is shown that the relevant result comparison is carried out with the
existing resulf.
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Non-membership Degree, Lattice.
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1. INTRODUCTION

On the fuzzy set analysis, most of works have been considered by standardized membership function
structure, those are composed of membership and non-membership degree satisfying total unit
information. Standard fuzzy membership grades in the fuzzy set were expressed with precisely (Zadeh,

1965). For attempting better description, the research has extended by including imprecision and
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uncertainty through approaching on intuitionistic and interval valued fuzzy subsets (Atanassov, 1986;
AtanassovK. and GargovG., 1989; Atanassov, 2012; Karnik and Mendel, 2001; Mendel and John, 2002).

In order to discriminate the pattern, proper measure need to provide numeric value. Then, the similarity
measure plays the degree shows numeric value between patterns similar degree. Statistical information
such as mean, variance and correlation are utilized (Weiss, and Weiss, 2017). Furthermore, the
heuristic approach is also considered to analyze the data characteristics (Abbass, Sarker and Newton,
2002). Heuristic approach methodology is considered by the design of entropy and similarity measure.
Entropy and similarity measure are the essential for studying of data information including fuzzy sets.
The characterization and quantification of data fuzziness have important role by applying the
management of uncertainty in the modeling and design of many systems. As it was explained, the
entropy is a measure of the data uncertainty, and the results have been established by previous
researchers (Pal and Pal, 1989; Liu, 1992; Bhandari and Pal, 1993; Ghosh, 1995; Kosko and Burgess, 1998).
Zadeh proposed fuzzy entropy as a measure of fuzziness; Pal and Pal analyzed classical Shannon
information entropy; Kosko considered the relationship between distance measure and fuzzy entropy;
Liu proposed axiomatic definitions of entropy, distance measures, and similarity measures and
discussed the relationships among these three concepts. Bhandari and Pal presented a measure of
fuzzy information for distinguishing between fuzzy sets. Further, Ghosh used fuzzy entropy in neural
networks (Ghosh, 1995). Data analysis has been based on the analysis of calculating uncertainty and
certainty of data. Uncertainty calculation with respect to fact can be measured from designing the fuzzy
entropy. The results are emphasized by the design of fuzzy entropy with explicitly y (Luca and Termini,
1972; Lee, Kim, Cheon and Kim, 2005). By the complementary characteristics, similarity measure
represents the degree of similarity between data sets (Chen and Chen, 2003; Li, Olson and Zheng, 2007;
Lee, Kim and Choi, 2006; Lee, Pedrycz and Sohn, 2009). Hence, the entropy and similarity measure are
explained with the complementary information for each other. So the similarity measure (entropy) could

be derived from entropy (similarity measure) in the previous literature (Liu, 1992; Lee et al., 2006).

The similarity measure provides the degree of similarity between two or more data sets, and it has the
central role in decision making, pattern classification, etc., (Rébillé, 2005; Sugumaran, Sabareesh and
Ramachandran, 2008; Kang and Jin, 2008; Shih and Kai, 2008; Hsieh and Chen, 1999). Thus, the similarity
measures design on FSs, IFSs and PFSs have been carried out by numerous researchers (Burillo and
Bustince, 1996; Li and Cheng, 2002; Li et al., 2007; Hung and Yang, 2006; Szmidt and Kacprzyk, 2001;
Yager, 2014; Wei and Wei, 2018; Zhang, Hu, Feng, Liu and Li, 2019). From the conventional researches,
similarity measure has been derived via fuzzy numbers for the FSs (Chen and Chen, 2003). However,
derived similarity measures are restricted to triangular or trapezoidal membership functions (Chen and
Chen, 2003). Similarity measures design with the distance measure can be generalized and are
applicable to the general fuzzy membership functions including nonconvex fuzzy membership functions
(Lee et al., 2009; Lin, 2008). For the similarity measure on IFSs, measure design shows the structure
with the difference with membership and non-membership, |v,(x;) — vg(x)| and |ua(x;) — pg(x)],
respectively. Additionally, hesitation m(x) = 1 — u(x) — v(x) is also expressed as similarity measure on
IFSs (Burillo and Bustince, 1996). Recently, PFSs similarity measure is shown with the p2(x) and v3(x)
(Wei and Wei, 2018; Zhang et al., 2019).
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As an extension of fuzzy sets, IFSs and vague sets were introduced by Atanassov, Gau and Buehrer,
respectively (Ghosh, 1995; Kosko and Burgess, 1998; Luca and Termini, 1972; Lee et al., 2005). Bustince
and Burillo pointed out that the conventional comparison analysis between IFSs and vague sets showed
the same (Chen and Chen, 2003). Object description through IFSs make more realistic, practical and
accurate. Hence, fuzzy entropy and similarity construction on IFSs are important to get more reliable
results. From the definition of IFSs, we have proposed fuzzy entropy and similarity measure design on
IFSs (Park, Hwang, Park, Wei and Lee, 2013). In which results, fuzzy entropy was considered using the
hesitation structure with respect to the crisp data. And the similarity measure is also proposed with the
summation of hesitation between comparable IFSs. For the IFSs membership value viewpoint, all
existing membership degrees are considered for positive value of u(x), v(x), and n(x). When the u(x)
and v(x) are close to degree one, it is possible to illustrate negative value of (x). It is also satisfied

the case of u(x) + v(x) + m(x) = 1.

In this regard, we introduce the characteristics the similarity measure on FSs, IFSs and PFSs. Due to
the importance of similarity measure, we propose similarity measure design for the membership and
non-membership range 0 < u(x) < 1 and 0 < v(x) < 1. The obtained similarity measure can apply to
degree satisfying PFSs and over, that is, u3(x) + v3(x) < 1 and p3(x) + v3(x) > 1 as well. Distance
measure helps us to construct similarity measure with explicitly, and with the formation of u(x) and v(x).
Unlike with the conventional PFSs similarity measure, the similarity measure not include u3(x) and
vi(x) even the considered degrees satisfy PFSs. The proposed similarity is verified by proof of its
similarity measure definition. Further discussion on the hesitation m(x) = 1 — u(x) — v(x) is delivered.
With the reference of fuzzy line, hesitation value is divided into positive and negative, and the positive
hesitation satisfy there is no information on the degree. Whereas negative hesitation satisfy the overlap

with membership and non-membership degrees.

From the definition of entropy and similarity measure on fuzzy sets, entropy and similarity measure
could be organized via distance measure (Liu, 1992). Furthermore, a relation between distance and
similarity measures illustrated the total information (Atanassov, 2012). Membership and non-
membership degree satisfy the range 0 < u(x) <1 and 0 < v(x) < 1, respectively. Compare with the
conventional similarity measure structure, two dimension similarity components are designed based on
the membership and non-membership degree. The existing similarity has been designed by the
combination of membership and non-membership difference with scalar value, in this case fuzzy set is
considered for u(x) + v(x) < 1 or u?(x) + v?(x) < 1. Then the similarity measure represents as two
ways, one is based on membership degree and the other is non-membership degree. They are
independent components, hence the integrated similarity measure needs to be ordered through two
similarity measures structure. It can be considered with magnitude, 1-norm structure or inner product
to represent the order. The ordered set with inferior and superior operation constitutes lattice structure,
and it propose the similarity measure order in non-empty set. With the graphical representation of lattice

diagram, component ordering has been also illustrated.

In this paper, we emphasize the similarity measures on fuzzy sets, and it is verified via proof and applied

to numeric data sets. In the next section, preliminary result on fuzzy sets and similarity measure are
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introduced. Membership degree is explained through graphical illustration together with non-
membership degree. Furthermore, similarity measure definitions on FSs, IFSs and PFSs are introduced
and discussed with the existing results. Three fuzzy sets, FSs, IFSs and PFSs are also illustrated with
graphically. In Section 3, existing similarity measure on FSs, IFSs and PFSs are introduced and
analyzed. And the similarity measure is proposed by the consideration for all membership 0 < u(x) < 1
and non-membership is also satisfying 0 < v(x) < 1. Then the similarity measure constitutes two
components of membership and non-membership degree, and the unified similarity measure is
proposed to constitute ordered set with lattice structure. In Section 4, ordered set in the considered
inner product is illustrated which has order characteristics with magnitude and phase with respect to
the linear line. Magnitude and phase are designed with membership and non-membership similarity
measure. Additionally, the unified similarity is illustrated with Hasse diagram which represent the
similarity measure order. Finally, the conclusions are stated in Section 5. In this paper, fuzzy set

notations are followed the relevant references (Zadeh, 1965; Atanassov, 1986; Liu, 1992).

2. PRELIMINARIES ON FUZZY SETS AND SIMILARITY MEASURE

In this preliminary, fundamental knowledge on fuzzy sets and similarity measure are introduced.
Characteristics on standard fuzzy sets, intuitionistic fuzzy sets and Pythagorean fuzzy sets are

explained with its membership degrees, and the existing similarity measure.

2.1. Fuzzy sets and intuitionistic fuzzy sets
Zadeh introduced the fuzzy set with its membership function u,(x) for universe of discourse x € X with

1a(x) belong to the value inbetween [0,1]. Fuzzy set A4 in the universe of discourse X = {x;, x5, ..., X, }
defined as follows:

A= {(x,1a00) |x € X, 1a(x) € [0,1])
where, p,(x) denotes a membership function of x in X. And, non-membership is expressed for the

normalized set as v,(x) = 1 — p,(x).

As the extension of FSs, Atanassov introduced IFSs which includes hesitation of information, which is
data uncertainty. From the definition, it is noticed that the information is categorized in more detail
(Atanassov, 1986; AtanassovK. and GargovG., 1989). Together with membership degree y,;(x), non-

membership degree v,(x) is expressed in the following definition, respectively.

Definition 1. (Atanassov, 1986) IFSs I for the universe of discourse X = {x,, x5, ..., x,} is defined as
follows:

I={(x 100, v (x)) |x € X, p;(x),v,;(x) € [0,1],0 < p; (x) + v, (x) <
where, pu;(x) and v;(x) denote a membership function and non-membership function of x € X,
respectively.
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From the Definition 1, it is clear that membership degree of IFS I should be restricted in (,u,(x), v,(x)).
Degree of uncertainty can be defined by 1 — y;(x) — v;(x) = m;(x) Furthermore, if y;(x) +v,(x) = 1,
then IFSs I is considered as a standard fuzzy set. To evaluate the uncertainty or entropy on IFSs,
hesitance information, membership and non-membership degree have to be considered. By
considering hesitance, fuzzy set property is defined.

Definition 2. (Atanassov, 1986) For IFSs I in the universe of discourse, if y;(x) + v;(x) = 1 and p,;(x) +
v;(x) = 0, then I is considered as a fuzzy set and null set, respectively.

All degree points in the whole range represent all values belong to 0 < u(x) < 1and 0 <v(x) < 1.
Hence, all points are defined as FSs, IFSs and PFSs by their definition. We illustrated the relation of
membership and non-membership value with figure in later. In the reference (Lee, et al, 2005)], null set
was modelled by having no any other information about data themselves. It represents the coordination
of u;(x) — v;(x) plane. Even the hesitance is illustrated by the area under the fuzzy line. Inside of the
area, it is clear to obtain the relation of u;(x) + v;(x) + hesitation = 1. By the graphical representation,
it is clear that hesitance satisfies one as y;(x) + v;(x) - 0, that is, hesitancy approaches to origin;
whereas sets on the fuzzy line means that it has no hesitance. Under the fuzzy line, relations between
membership degree and non-membership degree are defined by 0 < y;(x) +v;(x) < 1.

2.2. Pythagorean fuzzy sets
PFSs is introduced as another non-standard fuzzy sets. Information representation with more flexible

expression, and it is illustrated by IFSs and interval valued fuzzy sets (Atanassov, 1986; Atanassov. and
Gargov G., 1989). Specifically, PFSs extends the application range of IFSs by the comparison result

between intuitionistic fuzzy number and Pythagorean fuzzy number (Yager, 2014; Wei and Wei, 2018).

Definition 3. (Szmidt and Kacprzyk, 2001 A PFS P for the universe of discourse X = {xy,x;, ..., x,} is
defined as follows:

P ={(x,up(x),vp(0)) |x € X,up(x),vp(x) € [0,1], u3 (x) +vi(x) < 13
where, up(x) and vp(x) denote a membership function and non-membership function of x € X,

respectively.

Membership relations are summarized as follows:

® IFSs: y;(x) +v;(x)m(x) =1

® PFSs: ud(x) +v3(x) +mi(x) =1

From Definition 2 and 3, hesitation degree of IFSs and PFSs are defined as follows (Peng and
Selvachandran, 2019):

® |[FSs:m(x)=1—-wx)—v,(x)

® PFSs:mp(x) =+/1—p(x) —vi(x)

For the specific x € X, assuming y;(x) = up(x) and v;(x) = vp(x), then

-3 - V30 = 1w - v

is satisfied forrange 0 < pu(x) < 1and 0 <v(x) < 1
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Figure 1. Hesitation m;(x) (a) and 7 (x) (b).

From the Equation 1, it is notified that hesitation extend the range even with the same membership and
non-membership degree, up(x) = p;(x) and vp(x) = v;(x). It cause from the degree limitation, 0 <
u(x) < 1and 0 < v(x) < 1, then the square u?(x) and v2(x) are less than u(x) and v(x). From the

simulation results on hesitation and hesitation difference are illustrated in Figure 1 and 2, respectively.
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Figure 2. Difference between m,(x) and m;(x).

In the simulation, it is not considered for the case of u;(x) + v,(x) + m;(x) > 1 and u2(x) + v3(x) +
m3(x) > 1. In the next subsection, similarity measure design procedure is shown with similarity definition
and previous examples.

2.3. Similarity measure
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Many researches on the similarity measure have been carried out by the numerous researchers, it was
designed based on distance measure and fuzzy number r (Pal and Pal, 1989; Liu, 1992; Bhandari and
Pal, 1993; Ghosh, 1995; Kosko and Burgess, 1998; Luca and Termini, 1972; Lee et al., 2005; Chen and
Chen, 2003; Park, Lee, Song and Ahn, 2007; Lee et al., 2006). Similarity measure represent the similar
degree between different information and data, and similarity measures design have been proposed
based on the definition (Liu, 1992; Luca and Termini, 1972).

Definition 4. (Liu, 1992) A real function s: F? —» R* is called a similarity measure, ifs has the following
properties:

(S1) s(4,B) = s(B,A),A,B € F(X),

(S2) s(D,D¢) = 0,D € P(x),

(S3)s(C,C) = Ar,ggl):(s(A, B),D € F(X),

(S4)A,B,C e F(X),ifAc B c C,thens(4,B) <s(4,C),and s(B,C) = s(4,C).
where R* = [0, ), X is the universal set, F(X) is the class of all fuzzy sets of X, P(X) is the class of all

crisp sets of X, and D€ is the complement of D.

The proposed similarity measure needs to be satisfied the Definition 1, and numerous similarity

measures could be derived.

2.3.1 Similarity measure design on FSs with distance measure
In this subsection, the similarity measure for FSs is introduced with the distance measure. In order to

illustrate with explicitly, distance measure is needed and the definition is introduced by Liu [40].

Definition 5. (Liu, 1992) A real function d: F? — R* is called a distance measure on F, if d satisfies the
following properties:

(D1) d(A,B) = d(B,A), A, B € F(X),

(D2) d(A,A) = 0,A € F(X),

(D3) d(D,D®) = Ar'ggl);d(A,B), D € F(X),

(D4) A,B,C € F,if A c B c C, then d(4, B) < d(4,C), and d(B, C) < d(A, C).

One of distance measure, Hamming distance is commonly used as distance measure between fuzzy

sets A and B in the following equation:
1 n
d(4,B) == ) lua () = (x|
i=1

where X = {xy,x,, ..., x,}, |k| was the absolute value of k. u,(x) is the membership function of A €
F(X).

With the Definition 4, similarity measure is proposed. It can be represented as explicit structure, and
the proposed similarity measures were illustrated in previous research (Park et al., 2007; Lee et al., 2006;
Wang, Lee and Kim, 2009).
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Theorem 1. (Wang et al., 2009) For any set 4, B € F(X), if d satisfies Hamming distance measure, then

s(A4,B) =d((AnB),[0],) +d((Au B),[1],)
is the similarity measure between set A and B.

Besides Theorem 1, numerous similarity measures are also possible to design. Other similarity

measure shows other structures as in Theorem 2, and its proof is also found in previous result [3,4].

Theorem 2. (Park et al., 2007; Lee et al., 2009) For any set 4, B € F(X), if d satisfies Hamming
distance measure, then
s(A,B)=1-d(4,ANB)—d(B,AnB)
s(4,B) =2—d((AnB),[1],) —d((A U B),[0],)

where N and U are defined as minimum and maximum, respectively.

Similarity measures Equation 3 and 4 are illustrated by the combination of common and uncommon
information between two fuzzy sets A and set B. The results on similarity measures are derived with
the distance measure based computation of the degree of similarity. Liu has also proposed an

axiomatic definition of the similarity measure for v A,B € F(X) and V D in crisp set (Atanassov, 2012).

2.3.2 Similarity measure on IFSs
There are some researches on the analysis of IFSs entropy has been considered (Chen and Chen, 2003;
Lin, 2008). They allow us to measure the degree of hesitation for the IFSs, and non-probabilistic type
entropy measure with a geometric interpretation of IFSs. It was proposed an axiomatic definition of IFSs,

which was considered by taking into account fuzzy set consideration.

Definition 6. (Chen and Chen, 2003) A real function I:IFS(X) — R* is called an entropy on IFS(X) if I has
the following properties:

(IP1) I(A) = 0, if and only if A is a fuzzy set,

(IP2) I(A) = cardinal(X) = N, ifand only if u, = v, =0, Vx € X,

(IP3) I(A) = I(A) for A € IFS(X),

(IP4) if A < B, then I(A) = I(B).

where A < B denotes that p,(x) < pp(x) and v,(x) < vg(x) for all x € X, which means that IFS B has
less hesitancy than IFS A. u,(x), v4(x), and m,(x) are the degree of membership, non-membership,

and hesitation of x in 4, that is expressed by m,(x) =1 — u,(x) — v4(x).
Szmidt and Kaprzyk also described the fuzzy entropy on IFSs by the ratio of intuitionistic fuzzy

cardinalities (Szmidt and Kacprzyk, 2001). Their definition was interesting. Briefly, entropy of datum “F”

in Figure 3, it is obvious IFS, was represented by
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E=—
b

where a and b are distance from F to the nearer and farther point among “A” and “B".

Actually, hesitation is contained in distance a and b. Hesitance is illustrated by the under fuzzy line;
dotted line between “A”” and “B" in Figure 3. Fuzzy entropy was proposed by De Luca and Termini and
the axiomatic definition referred to Shannon’s probability entropy (Luca and Termini, 1972).

Next, another similarity measure between IFSs was introduced by Dengfeng and Chuntian, it has similar
formulation with Definition 3 of the reference (Luca and Termini, 1972). Implicit similarity measure is

defined in Definition 7, those are similar with Definition 5.

Definition 7. (Li and Cheng, 2002) A mapping S:IFS(X) x IFS(X) — [0,1]. IFSs(X) denotes the set of all
IFSs in X = {xy,x,,...,x,}. s(4,B) is said to be the degree of similarity between 4 € IFS(X) and B €
IFS(X),if s(4, B) satisfies the properties of conditions:

(P1)s(4,B) € [0,1],

(P2)s(4,B) =1 A=B,

(P3)s(4,B) = s(B, 4),

(P4)s(A,C) < s(A4,B)yands(4,C) < s(B,C)ifAc B c C,C e IFS(X),

(P5)s(4,B) =0 A€ dand B =A4,or Band B € ®.

where ® means that information on IFS is very clear, y; = 0 and v, = 1. 4 detnotes the IFS complement
of A.

With the definition of fuzzy entropy and similarity measure, entropy and similarity measure have been
designed (Pal and Pal, 1989; Xuecheng, 1992; Bhandari and Pal, 1993). Its effectiveness has been verified
with the examples in the previous results. Comparison between IFSs similarity measure was done by
Lin, Olson, and Qin (Lin, 2008). They have compared conventional similarity measures. Furthermore,
other fuzzy entropy for IFSs has been also defined by Hung and Yang (Hung and Yang, 2006). In their
definition, IP2 and IP4 are different from those of their properties. Difference of two definitions has their

own characteristics.
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Figure. 3 Graphical representation of membership function and non-membership function.

Similarity measures for IFSs contained counter-intuitive cases (Lee et al., 2009). Especially, condition
P2 is very strict to overcome, because similarity measure based on the difference calculation between
two IFSs. For example, Lin et al showed similarity measure as follows (Li et al., 2007):

=y (Ivat)-ve(xpl+lna () -np(x)l)
2n '

Sy(A,B)=1-

Other conventional similarity measure showed almost same results. Here novel similarity measure

between IFSs is considered as (Park et al., 2013).

Theorem 3. (Park et al., 2013) Following equation satisfies a similarity measure on IFS(X).
S.(A,B)=1-D,(AB)
where D, (4, B) is expressed by the hesitancy distance between two IFSs, that is,
D, (A,B) = -1, d(ma (), w5 (x)))-
Then, similarity measure has the following explicit formulation.
SL(AB) =1 =~ 3L, d(ms(x), 75 (x).-

Proof is delivered in (Park et al., 2013). The theorem derived by the consideration of hesitation distance.

2.4. Lattice structure
In order to understand the lattice L, its basic concept is illustrated in the reference (Gratzer, 2006). Now,
we consider the order of each component in set. And the related knowledge is found in the relevant
research (Priestley, 2002). Let L be an ordered set. From the mathematical definition on lattice, it is

defined as; for the order A = ( 4, <), binary operation of < has the relation with reflexive, antisymmetric,
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and transitive characteristics. For any ordered subset {x;, x;} c L, there exist inferior and superior limits;
it is expressed as:
x; A xj:inferior limit of {x;, x;}
x; V x;: superior limit of {x;, x;}.
Thus, a lattice L is defined as:
x; € Land x; € L,V x;and x;
Il x=x A xjandx, € L

Il x;=x;V xjandx; € L
Definition 8. (Gratzer, 2006) An order L is a lattice iff a A b snd a v b always exist, for vV a,b € L.

In lattice, binary operation means that it satisfies idempotent, commutative, associative and absorption
identity (Gratzer, 2007). Then for the following definition is also summarized from the derivation of lattice
diagram (Gratzer, 2007). Brief description of absorption identity follows as; aVv (a A b) =aand a A (aV
b) =aforva,b € L.

Definition 9. (Gratzer, 2007) An algebra L = (L,A,V) is a lattice iff L is nonempty set with A and v are
binary operations on L and both A and v are idempotent, commutative, associative, and two absorption

identities for each operation.

From the Definition 8 and 9, we illustrate lattice diagram. It is also denoted as Hasse diagram. With the
ordered set L; = {xy, X, X3, X4, X5, X¢}, Hasse diagram is considered in Fig.4. Thus L, is at least a
reflexive transitive partially ordered set, it is also called as poset. Using the notation x; < x; if x;

precedes x;; it is expressed for the ordered set L, in Figure 4.

e
Xe
X3 ® X, X5 d
?b
X, c
® X1 a
(a) (b)

Figure 4. Hasse diagram with ordered set L, = {xy, x,, x3, x4, x5, X6} (@) and L, = {a, b, c,d, e} (b).
Then three possible relation satisfy with the help of preference < : x; < x, < x3 < x6, %, < %, < %, <

Xg,and x; < x, < x5 < x4 in Figure 4(a). Another lattice L, = {a, b, ¢, d, e} is shown in Figure 4(b) with:

a<b<canda<c<d<e

Int. J. Artif. Intell. 54 ISSN 0974-0635



International Journal of Artificial Intelligence

is satisfied. Furthermore, the relation b and c is not comparable, b and d as well.
Then the product ordering L; x L, can be illustrated:
(x1,a) < (x1,0) < (x1,d) < (x_1,e)
(x,a) < (x3,a) < (x3,a) < (x6,a) and so on.
When the poset include a greatest lower bound (glb) and least upper bound (lub) for each nonempty

subset, it is a complete lattice.

3. SIMILARITY DESIGN ON FUZZY SETS

Similarity measure on Pythagorean fuzzy set is proposed by the consideration of previous similarity
measure of IFSs and standard fuzzy set. First, the importance of the similarity design for the
Pythagorean fuzzy sets is introduced and the measure design is delivered.

3.1. Analysis on membership and non-membership degree of FSs, IFSs, and PFSs
From the fuzzy set classification, we assume the membership and non-membership degree with 0 <

u(x) <1and 0 < v(x) <1, respectively. Then, several ranges are categorized:
u(x) +v(x) < 1,positive hesitation: r(x) > 0,
u(x) +v(x) = 1,no hesitation: r(x) = 0,
u(x) +v(x) > 1,negative hesitation: m(x) < 0.

Above three categories can be divided from the hesitation viewpoints. Specifically, negative hesitation
range includes PFSs range as below;
u(x) +v(x) > 1,and bound with u(x) < landv(x) < 1.

Classification with the values of p(x) and v(x) are shown in Figure 3. Fuzzy set is considered as the
standard IFSs, so the similarity measure has been designed with the Theorem 1 and 2 together with
the references (Park et al., 2013). PFSs satisfying u(x) + v3(x) = 1 has been proposed by Wei and
Wei, Zhang et al. (Wei and Wei, 2018; Zhang et al., 2019). The difference of similarity with FSs, IFSs and
PFSs is that all of the PFSs similarity measures include the combination of u2(x) and v3(x). And, it is
still difficult to design the similarity measure for the fuzzy set having hesitation.

For the negative hesitation area also includes over PFSs range; greater than u(x) + v3(x) = 1, it is
noticed that the similarity measure design can be extended for the whole membership and non-
membership range satisfying p(x) + v(x) > 1, u(x) < 1 and v(x) < 1. Specifically, it is interesting to
investigate the similarity for the fuzzy set in the area over the beyond u2(x) + v3(x) > 1.

Additionally, there are two regions inside of Pythagorean membership degree. For the points inbetween
u(x) +v(x) =1 and p2(x) + v3(x) = 1, one of the point x, located in Figure 3. Under dotted line (Fuzzy
line) represents positive hesitation; p(x) + v(x) < 1 then, n(x) =1 — u(x) —v(x) is positive. For the
area in upper fuzzy line, hesitation satisfies negative as m(x) =1 — u(x) — v(x) for pu(x) + v(x) > 1.
Three points x,, x, and x5 are illustrated in membership and non-membership degree in Figure 3.

Except the fuzzy line u(x) + v(x) = 1, all degree points have hesitation (x). Which is expressed by:
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n

1
R = 1= ) (W) +v(x)]

i=1
Hence, the mentioned hesitation has the value as positive or negative, then it plays an important role
in similarity measure design. Positive and negative value act different meaning from the membership
and non-membership degree viewpoint, positive value indicate there is no overlap between two degrees;

membership and non-membership.

3.1. Similarity measure comparison for FSs, IFSs, and PFSs
Fuzzy sets and similarity measure definition and the conventional similarity measures are illustrated in

the previous section. Recently, similarity measure on PFSs are appeared in the research (Yager, 2014;
Wei and Wei, 2018; Zhang et al., 2019).
Characteristics of each similarity measure is summarized as follows:
® FSs similarity measure: hesitation 7 (x) = 0 is considered. Then the similarity measure
constitutes with only u(x) and v(x) (Luca and Termini, 1972).
IFSs similarity measure: in the conventional results are expressed with 7(x) (Yager, 2014).
PFSs similarity measure: structure constitutes the difference between two PFSs with w2 (x) and

v(x) (Wei and Wei, 2018; Zhang et al., 2019). It describes the minimal value of difference.

In the design of similarity measure, two approaches are considered. First, hesitation area minimization
and shape difference are considered. FSs and IFSs similarity measure and entropy are designed by
the consideration with u(x) and v(x). Even u2(x) and v(x) are considered for the similarity measure
on PFSs, it is also based on p(x) and v(x).

To design the explicit structure, distance measure is needed to illustrate the similarity between
comparable data sets. Following distances are used in common; for A = {a;|(ay, a,,..,a;),i =1, ...,n}
and B = {b;|(by, by,.., b;),i = 1,...,n},

1
d(A,B) = 3 X la; — by
T :
d(4,B) = |5 Ximi(a — b)?

Among the IFSs, there are different hesitation degree and need to be considerate for the similarity
measure design. For example, two degree points M and N in Figure 3 show different hesitation. Point
M include high membership and non-membership degree, furthermore high hesitation as well. Whereas
Point N shows small hesitation, together with rather small membership and non-membership. In IFSs,
from the fuzzy set properties, complement characteristic is not consistent, it means; pf (x) is not the
same with v;(x). In FSs, p¢(x) = v(x) and v¢(x) = u(x), where superscript C denotes complement of
membership degree and non-membership degree. FSs similarity measure design could be designed
with single variable, u(x) or v(x) due to its complementary characteristic. However, two variable need
to be considered by way of y;(x) and v,(x) for IFSs similarity measure design because of their

independent characteristic, uf(x) # v(x) and vice versa.
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Hence, similarity design and analysis on all degrees in Figure 3 are necessary by the consideration of

u;(x) and v;(x). Now the similarity measure will be organized for the following structures:

$1(A,B) = f(pa(x), up(x)) and 5,(4, B) = g (v (x), v (x)).
Next, explicit structure and analysis will be delivered.

3.1. Similarity measure with lattice
In this subsection, we propose the similarity measure design on similarity plane satisfying 0 < u(x) <

1and 0 <v(x) < 1. Similarity measure design with only membership degree u(x) is formulated as
s1(4, B), whereas similarity measure design with only non-membership degree v(x) is formulated as
s, (4, B). With normalized similarity measure, it is applied to all degree points satisfying 0 < s,(4,B) <
land 0 < s,(4,B) < 1 and its formulation is applied to all degree point in Figure 3. By the similarity
measure Definition 5, we consider two approach as usual; minimize hesitation 7(x) and, consider
similar shape. Based on the conventional similarity with membership and non-membership degree,

following similarity measure proposed.

Theorem 4. Following equation satisfies a similarity measure for all degree points in Figure 3.

n
1
5.4 B) = 1= () — s ()], Y 31 € X
i=1

where, | - | denotes absolute value, and p,(-) and ug(-) are membership degree of fuzzy set A and B.
Membership degree replace with non-membership degree v,(-) and vz(-) makes non-membership

similarity measure.

Proof. Similarity measure proof is clear with the Definition 5 and 7. From the Definition 5, (S1) is clear
from the definition, s(4, B) = s(B, A). And from the complement characteristic, crisp data satisfy u, (-)=1
and ppc(-) =0 or vise versa. Then, % i lup () —ppe(x)| = 1 is satisfied. For (S3), it is clear
a(x;) — pa(x;) = 0 for all x; € X. Finally, for fuzzy sets 4,B,C € F(X), f Ac Bc C, thens(4,B) =
s(A,C)and s(B,C) = s(4,0).

Similarly, similarity measure design on non-membership degree can be obtained by replace with v,(-)
and vg ().

Then from the value of similarity measure, point “b” in Figure 5 indicates high similarity on membership
degree. Whereas “c” illustrates high similar on non-membership compare to the membership degree.
High similar values are preferred with respect to membership and non-membership such as “a” and “d”
points.

Then, similarity measures are become the component of two coordination, s; and s,. Briefly, region U
indicates high non-membership similarity, and high similar membership in region D. By the

consideration of two dimension space:

s(A,B) = {(51(4,B),5,(A, B0 < sya5) Saam < 1}.
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Each point, “a” to “d” is expressed by polar coordination as s(4,B) = /(s? + s2)e/®, where 6 =
tan‘l(z—z) = 45°. Magnitudes in “c” to “d” are the same, but different membership and non-membership
1

“

similarity illustrate respectively. And the points “@” and “b” has same membership similarity, but much

difference in non-membership similarity. It is clear from the membership characteristic in Figure 5.

$:(A,B) f~~

>

5,(A.B)
Figure 5. Membership and non-membership similarity measure.

From the knowledge of lattice structure in Subsection 2.4, two ordered set on similarity measure can
be proposed:

Ly ={s;}and L, = {s;}
where s, and s, are similarity on membership degree and non-membership degree, respectively.
Ordering L; x L, = {sy, s,} can be considered with the consideration of measure on L; X L, such as k,

and ky:
ky = |s1| + |syland ky, = ,512 + s2.

Then, we summarize the non-empty set L to institute lattice L. For example, ordered set {k,} and {k;}

have the components as: Ly, = {k,k;, ..., k,},for p = g, hallreal valuesn = 1,2, ..., o0.
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lub, 2.2

value n

value 2

value 1

glb, 0,0

Figure 6. Lattice L, with ordered set {k,}, k,, = |s;| + |s,| and k,, = y/sZ + s5.

Greatest lower bound (glb) and least upper bound (lub) of L, is summarize as follow: glb(L,,) = 0,
lub(Lyg) =2 and glb(Ly,) = 0, lub(Lyy,) = V2 are satisfied for 0< s; < 1and 0< s, < 1. Then,

Lyg ={0,....2} and Ly, = {0, ...,\/2} are expressed explicitly, and the lattice is illustrated in Figure 6.
Now we define inner product for each point with respect to the line which is satisfying s; = s,. For the
specific point in Figure 5, point s = (s4,s,) is expressed as s = \/s? + sZe/?; 5, denotes membership
similarity and s, is non-membership similarity; 0 is the tan‘l(Z—z).
1

Definition 10. Inner product between similarity measure and the proportional line is satisfied by the
consideration of normalization of inner product:

S - Sper = |S||Sger|cos(¢)

jtan~1(52 1 igee . _
where s = \/s2 + s2¢’"*" )  Sper = 5€/%, ¢ = [45° — tan™! BHlforo< s;< land0< s, < 1.
2

We let the non-empty set L, such glb(Ly,) = 0, lub(Ly,) =1, Ly, = {0, ...,1}. Inner product in Definition

10 provides its order with lattice, and it is illustrated in Figure 7.
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@b, 1

[S4||SrEF|cOSP,
|s31|1Sgrer|cOSPs
|521|1SgEr|COSP2

[s11ISrer|cose,

glb, 0
Figure 7. Lattice L, with order set {k,}, k, = |s||Sggr|cos(¢)

3.2. Relation analysis on two similarity measures
From the knowledge of lattice structure in Subsection 2.4, two ordered set on similarity measure can
be proposed: Ly = {s;} and L, = {s,}. Where s, and s, are the similarity on membership degree and
non-membership degree, respectively. Product lattice L, x L, = {s;, s,} can be expressed by dictionary
as in Figure 8(a). where L, = L, = {a,b,c, ..., z}.

(z,2) 1-1
(b, b) s s
(b, a) - Sin - Sam
(a,c) ttSip t Szt
(a,b) "t 8S1i * Sz2j
(a,a) 0-0

(a) (b)

Figure 8. Dictionary order on the membership and non-membership similarity measure.

where i, k,n, p, ... belong to the set of membership degree similarities, and j,[,m, g, ... are parts of non-

membership degree similarities. With the inner product definition, one of inner product is defined as:
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S1i° S25 = [s||srerlcos(¢p)

S2j

: -1(22] . X . o
where s = /5121- + szzl-e]mn (Sli), SREF = %9145 , ¢ =145 — tan™?! Cﬁ)| In Figure 8(b), infinite number
1i

of same values are per each level.

In this research, similarity measures design has been proposed for FSs which has membership and
non-membership degree. Considered FSs ranges can cover IFSs and PFSs, and it is expected to be
generalized. Designed similarity measures depend on membership and non-membership degree even
IFSs and PFSs; membership degree u(x) and non-membership degree v(x); similarity measure for
each membership and non-membership are considered as independently and separately. Hence, the
proposed measure constitute with the two dimensional vector, so lattice structure or lexicographic are

considered to decide the order.

For two lattice L; = (L, <) and L, = (L,, <), two orders are considered as L, = {s;} and L, = {s,}.

When we consider s; and s, as membership and non-membership degree, then L, X L, also constitute
set with infinite elements; k, = |s;| + |s,| and k, = /s + s5. Even for the s - sper = |s||sggr| cos(@), it

constitutes infinite element in Figure 5. Lattice structure consist as follows; L; =

stitss  [siatsi, o o
{0, S ..,1} and L, = {cos(45°), ..., cos(¢,), cos(¢,),cos(0°)}. For the component order

follows:
2 2 2 2
Si1+ s Si, + s
0<\]11221<\/12222<“'<1

and cos(45°) < -+ < cos(d,) < cos(d,) < cos(0°)

for s11 < 513,521 < Sy5,... and ¢, < ¢, < -+ . Then the product ordering L, X L, can be constructed.

4. ILLUSTRATIVE EXAMPLES

In this section, numerical example is illustrated for the verification of the proposed similarity measure.
And the similarity measure components are analyzed.

4.1. Numerical Examples
Example 1. Case of pattern recognition is considered; with the formation A; = {(x;, s (x;), va(x))|x; €

X} (Wei and Wei, 2018). Three unknown patterns are represented as
A; = {(x1,1.0,0.0), (x,,0.8,0.0), (x3,0.7,0.1)},
A, = {(x;,0.8,0.1), (x5, 1.0,0.0), (x3,0.9,0.1)},
Az = {(x1,0.6,0.2), (x,,0.8,0.0), (x3,1.0,0.0)},
and the unknown pattern B = {(x4, 0.5,0.3), (x,, 0.6,0.2), (x3,0.8,0.1)}.
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Similarity measure calculation results are illustrated in the reference as well (Zhang et al., 2019). From
the result, Zhang et al. showed similarity ranking with Pythagorean similarity measure as 4; > A; > A,,
whereas existing results showed different order A; > A, > A;. Calculation results depend on similarity

measure structure.

The calculation result with Equation in Theorem 4 is illustrated in Table 1. For similarity measure with
non-membership degree v(x) is also used; s,(4,B) =1 —%2?=1|VA(XL-) —vg (x)| , Vx;€X .
Membership degree of 4;, A,, A;, B are satisfied by the characteristic degree of IFSs satisfying u, (x) +
v4(x) < 1. Hence, the similarity measure keeps the same pattern for the similar distribution even the

degree satisfies p,(x) + v, (x) > 1.

Table 1: Similarity calculation with Theorem 4.

Comparable sets s1(4,B) s,(4,B) S * SReF
(A4,B) 0.733 0.733 0.733
(4,,B) 0.733 0.767 0.750
(43,B) 0.833 0.767 0.800

Membership  |[Non-membership
L L Inner product
similarity similarity

From Table 1, we show the result is not consistent for each similarity measure. Summation result is the
same with the existing result (Wei and Wei, 2018; Zhang et al., 2019). And the similarity measure on
PFSs, consisting component include p2(x) and v3(x). Hence, the measure calculation result can be
changed by the measure structure, and the comparison pair shows not much difference. In Table 1,
inner product s - sgr calculations are obtained by:

_ [0.7332+0.7332

St Sppp, = [T ¢0
_ [0.7332+0.7672

S*SRER, T T 5
0.8332+0.7672 o _1 (0.

S Spgr, = \|— 5 C0S |45 —tan (ﬁ

For the pattern recognition problem is compared with the previous example (Boran and Akay, 2014).

s |45° —tan™? (w)‘) =0.733,

0.733

(
cos (|45° —tan™t (ﬂ)‘) = 0.750,
(

0.733

IS)
N
[
<
~—
~—
Il
I
[ee]
(=)
e

Example 2. (Boran and Akay, 2014) There are three known patterns P;, P, and P; with the class label
of €, C,, and C; respectively. And these patterns are over an universe of discourse X = {x;, x,, X3, x4},
and they are represented by the IFSs as following:

Py = {{x1,0.5,0.2|x; € X),(x,,0.5,0.2]|x, € X),(x3,0.4,0.2]x3 € X),(x4,0.5,0.3|x, € X)},

P, = {(x1,0.5,0.3|x; € X),(x;,0.5,0.2|x, € X),(x35.0.4,0.2|x; € X), (x4,0.3,0.5|x, € X)},

P; = {(x1,0.5,0.2|x; € X),(x;,0.5,0.2|x, € X),(x3.0.4,0.2]|x3 € X),(x4,0.5,0.3|x, € X)}.

Unknown pattern Q is represented by the IFSs as follows:
Q = {(x1,0.4,0.2|x; € X),(x;,0.5,0.2|x, € X),(x3,0.4,0.2|x3 € X),(x4,0.5,0.5|x, € X)}
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The target of this example is to demonstrate that the pattern Q belongs to which class. To do so, the
similarity calculation between unknown pattern Q and different classes C,, C,, and C; will be illustrated.
Then pattern Q is assigned to class C;- described by the following equation:

i* = arg <§7;1L§£3§(S(Pi' Q)))-

In the calculation results (Boran and Akay, 2014), it was pointed out the unreasonable similarity degree
by the different similarity measurements. In (Cheng, Chen, and Lan, 2016), S. M. Chen et al. has
supplement some similarity measurements after Baron and Akay (Chen, 2003; Boran and Akay, 2014).
The summarized results are illustrated in Table 2 with the proposed similarity measure. To make it
consistent, the existing similarity measures are denoted by the same notations as them in (Cheng, Chen,
and Lan, 2016).

Table2: The comparison of similarity measures (counter intuitionistic cases are in bold type).(p = 1 in
Sm»Sis1Sus2,Suss @nd p = 1,¢ = 21in Sgy)

\ 1 | 2 | 3 | 4 | 5 | 6
A (0.3,03) (0.3,04) (1,00 (0.50.5) (0.4,0.2) (0.4,0.2)
B (0.4,0.4) (0.4,0.3) (0,0 (0,00  (0.5,0.3) (0.5,0.2)
Sga 0.967 0.9 0.5 0.833 0967  0.95
Se 1 0.9 0.5 1 1 0.95
Suk 0.9 0.9 0.5 0.5 0.9 0.95
Skz 0.95 0.9 0.5 0.85 0.95 0.95
Suzp 0.9 0.9 0.3 0.5 0.9 0.93
Spe 1 0.9 0.5 1 1 0.95
Sy 0.9 0.9 0.5 0.5 0.9 0.95
Sps1 0.9 0.9 0.5 0.5 0.9 0.95
Sis2 0.95 0.9 0.5 0.75 0.95 0.95
Sis3 0.93  0.933 0.5 0.7 0.93 0.95
Suv1 0.9 0.9 0 0.5 0.9 0.9
Suya 0.85 0.85 0 0.38 0.85 0.85
Suya 0.82 0.82 0 0.33 0.82 0.82
Sy 1 0.96 (] (i} 0.9971 0.9965
S - Sper 0.9 0.9 0.5 0.5 0.9 0.95

It could be found that the similarity degree obtained by the proposed similarity measure are counter
intuitionistic when the FSs are in the neighborhood of the reference pu(x) = v(x) for single element in
the pattern.

In Equation 17, S(P;, Q) denotes the similarity degree between unknown pattern and the known pattern
P;, where i = 1,2,3. The proposed similarity measurement and some existing similarity measurement
summarized by Boran and Akay (Boran and Akay, 2014) are illustrated in Table 3.

It is obviously that S and S, cannot discriminate the P, and P; with unknown pattern Q. The similarity
measure Srz, Sis2, Suy1, Suyz, and Syy; obtained the same similarity degree of pattern P, and P, with
the unknown pattern Q. In this situation, the inner product s - sgzr can make it distinguishable for the
unknown pattern Q with pattern P,, P,, and P; in different classes. It implies that the proposed similarity
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measure performed well for multi-elements in the pattern even the elements are characterized by the
IFSs near to the reference u(x) = v(x).

Table3: Similarity measures between the known patterns and unknown pattern in Example 2
(indistinguishable cases are in bold type). (p = 1 in Sy, Sis1, St.s2, Suss @nd p = 1,t = 2 in Sgy)).

| S [ Q) | Q) | SPLO) | P@ | (P

Sc 0.963 0.978 0.975 Sis2 0.963 0.963 0.950

Suk 0.963 0.975 0.925 Sie3 0.963 0.958 0.942
Skz 0.963 0.963 0.950 Shy1 0.925 0.925 0.900
Sizp 0.921 0.913 0.900 Shya 0.886 0.886 0.849
Spe 0.963 0.975 0.975 Shys 0.860 0.860 0.818
Su 0.963 0.950 0.925 Sy 0.9917 0.9918 0.977

Sis1 0.963 0.950 0.925 Spa 0.963 0.967 0.958

S Sper 0.963 0.950 0.925

Example 3. (Cheng, Chen, and Lan, 2016) In this example, three known pattern P;, P,, and P; are
characterized by IFSs in the universe of discourse X = {x;,x,,x3}, and they are belonged to three
different classes C;, C,, and C;, respectively. These three patterns are represented as following:

P, = {{x,,0.500,0.450|x; € X),{x,,0.450,0.500|x, € X), (x3,0.500,0.500]x; € X)},

P, = {(x,,0.425,0.475|x; € X),(x,,0.450,0.550]|x, € X), (x3,0.450,0.475|x; € X)},

P = {(x,,0.375,0.525|x; € X),{x,,0.400,0.600|x, € X), (x3,0.400,0.525|x; € X)}.

The target of this example is to determine the unknown pattern Q which is also represented by IFSs in
the universe of discourse X = {x,, x,, x;} belonging to one of the classes C;, C,, and C;. The unknown
pattern Q is expressed as following:

0 = {(x,,0.400,0.500|x; € X), (x,,0.425,0.075|x, € X), (x3,0.425,0.500|x; € X)}.

To achieve the target, assignment function s - szg in Definition 10 is employed after the calculation of
similarity degree. The results are illustrated in Table 4.

Table4: A comparison of the classification results of proposed similarity measure s - sz with existing
similarity measures in Example 3 (p = 1in Sp¢, Sy, Sis1s Sisz, and Siss;p =21iNS;; w0 = W, = W3 = ;

inS;sz;p=1andt =2inSgy; wy =wy, =ws in S;g3, Szy, Sce, and Seey)-

Similarity measure ‘ S(P, Q) ‘ S(P,, Q) ‘ S(Ps, Q) ‘ Classification result
Spa 0.8958 0.9083 0.8917 c,
Sc 0.8958 0.9083 0.8917 C,
Sce 0.8837 0.9552 0.9552 Cannot be determined
Scr 0.8634 0.8648 0.8426 c,
Spc 0.8658 0.9083 0.8917 c,
Sz 0.8917 0.9042 0.8917 G
Suk 0.8875 0.9000 0.8917 G
Sy 0.8000 0.8250 0.8083 G
Suys 07132 0.7460 0.7241 G
Suys 0.6667 0.7021 0.6783 G
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Sizp 0.8177 0.8047 0.7845 C,
Sis1 0.8875 0.9000 0.8917 c,
Sis2 0.8958 0.9083 0.8917 c,
Sis3 0.8958 0.9083 0.9000 c,
S, 0.7362 0.7175 0.7040 C,
Su 0.8875 0.9000 0.8917 C,
Sy 0.9238 0.9184 0.8960 C,
Szv N/A N/A N/A Cannot be determined
SceL 0.9009 0.9222 0.9056 c,
S * SREF 0.8875 0.9000 0.8917 c,

Note:the counter intuitionistic cases are in bold type. 'N/A' denotes that it cannot calculation because of
'the division by zero problem'.

From the results in Table 4, it is obviously that S, ;,, S;, and S, are obtained the unreasonable result as
the unknown pattern § assigned to class C;. S and S, cannot determine the pattern § belongs to
which class in. The proposed similarity measure s - sz Obtained the same result as majority similarity
measures which is the unknown pattern § belonging to the class C,.

5. DISCUSSION AND CONCLUSION

Analysis on FSs, IFSs and PFSs has been done by reinforce on the membership and non-membership
degrees. Relation with the degree of FSs, IFSs and PFSs are summarized through the Fig. 1, 2 and 4,
and its characteristics are also analyzed. The existing similarity measures are also explained, the
proposed similarity measure could be generalized over the IFSs and PFSs. It means that the proposed
similarity could be applied to all membership degree u(x) and non-membership degree v(x) satisfying
from zero to one.

In the research, we proposed two similarity measures on membership and non-membership degree
separately. And the unified similarity measure is considered such as; 1-norm, magnitude and inner
product. Then, by the continuous membership characteristics, lattice constitutes infinite points structure
as in Fig. 5 and 6. By the comparison of the proposed similarity measure with existing ones, the
proposed similarity measure performed well in the pattern recognition task. It avoids the counter

intuitionistic cases in multi-elements pattern recognition.
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