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ABSTRACT

In the ever-changing landscape of airline ticket sales, efficient dynamic pricing strategies
are crucial for maximizing revenue while catering to diverse customer preferences. This
paper explores the application of Deep Reinforcement Learning (DRL) algorithms, namely
REINFORCE, PPO, A2C, SAC, and TD3, in the context of airline ticket pricing. Leverag-
ing a synthetic dataset and a Generalized Linear Model, these algorithms were rigorously
evaluated. Our study reveals that TD3 outperforms other models, showcasing rapid conver-
gence and robust reward optimization capabilities. We also provide a comparative analysis
of training times, essential for practical implementation. Through extensive experimenta-
tion and computational analysis, this research contributes valuable insights into the efficacy
of DRL techniques in dynamic pricing. The findings not only offer benchmarks for airline
industry applications but also illuminate the broader potential of advanced machine learn-
ing methods in revenue management across various sectors. This study underscores the
pivotal role of artificial intelligence in shaping the future of pricing strategies, providing a
roadmap for businesses aiming to stay competitive in today’s dynamic markets.

Keywords: Artificial Intelligence, Deep Reinforcement Learning, Revenue Optimization,
Dynamic Ticket Pricing.

2012 Computing Classification System: Computing methodologies →Machine learning
→Learning paradigms →Reinforcement learning →Sequential decision making.

1 Introduction

The aeronautical industry is marked by its inherent complexity, with airlines continuously striv-
ing to optimize their operations for maximum efficiency and profitability (Talluri and Ryzin,
2004). Among the multifaceted challenges faced by airlines, determining optimal ticket prices
stands as a pivotal yet intricate task (Wittman and Belobaba, 2018; Betancourt, Hortaçsu, Oery
and Williams, 2022). Traditional approaches to pricing, although rooted in statistical models,
struggle to adapt swiftly to the dynamic nature of market demands (Abdella, Zaki, Shuaib
and Khan, 2021). In the contemporary landscape, where technology revolutionizes business

International Journal of Artificial Intelligence, 
ISSN 0974-0635; Int. J. Artif. Intell. 
2024, Volume 22, Issue Number 2 
Copyright © 2024 [International Journal of Artificial Intelligence]

ISSN 0974-0635; Int. J. Artif. Intell. 
www.ceser.in/ceserp 
www.ceserp.com/cp-jour



paradigms, airlines seek innovative solutions to enhance their revenue strategies. This re-
search delves into the realm of Dynamic Pricing, a sophisticated strategy that tailors prices
based on real-time market dynamics (Abdella et al., 2021). Unlike conventional methods,
dynamic pricing responds promptly to shifts in demand, thereby enabling airlines to capital-
ize on fluctuations and maximize revenue potential (Shukla, Kolbeinsson, Otwell, Marla and
Yellepeddi, 2019). Leveraging the power of Reinforcement Learning (RL), a subset of arti-
ficial intelligence (Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Schrittwieser,
Antonoglou, Panneershelvam, Lanctot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever,
Lillicrap, Leach, Kavukcuoglu, Graepel and Hassabis, 2016), this study explores how deep
reinforcement learning algorithms can enhance airline ticket pricing strategies. The fusion of
Dynamic Pricing and Reinforcement Learning offers a promising avenue for airlines to opti-
mize their revenue streams in an increasingly competitive market. By infusing intelligence into
pricing decisions, airlines can anticipate customer behavior, adapt to market changes, and
strategically allocate ticket prices. This research aims to unravel the intricate interplay be-
tween dynamic pricing, artificial intelligence, and the aeronautical industry, providing valuable
insights that can revolutionize the way airlines approach revenue management (Talluri and
Ryzin, 2004; Cheng, Zou, Zhuang, Liu, Xu and Zhang, 2019).

1.1 Research Problem Statement

Dynamic pricing in the airline industry, guided by real-time customer characteristics, presents a
multifaceted research problem. This problem revolves around the development and optimiza-
tion of deep reinforcement learning algorithms to tailor ticket prices based on a comprehensive
understanding of customer features, ensuring maximized revenue while accommodating evolv-
ing market dynamics.

1.2 Objectives of the Study

This research pursues several key objectives:

• To develop and implement deep reinforcement learning algorithms for dynamic pricing of
airline tickets that consider a wide range of customer characteristics.

• To analyze the performance of these algorithms in terms of revenue optimization and
speed of convergence.

• To provide valuable insights into the integration of artificial intelligence, dynamic pric-
ing, and the aviation industry, offering a foundation for airlines to enhance their revenue
management strategies.

1.3 Structure of the paper

The structure of this paper is organized in order to facilitate a comprehensive exploration of
the dynamic pricing using deep reinforcement learning for airline tickets. In section 2, we
provide an in-depth review of the existing literature, examining the evolution of pricing strategies
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in the aviation industry. Section 3 dives into the methodology, elucidating the integration of
reinforcement learning algorithms into dynamic pricing models. We detail the data sources
and experimental setup in section 4, which precedes the presentation and discussion of our
findings in section 5. Finally, the paper concludes in section 7, summarizing the key takeaways
and outlining avenues for future research in the dynamic pricing landscape.

2 Literature Review

2.1 Historical Pricing Strategies in the Aeronautical Industry

The aviation industry has a long history of employing various pricing strategies to maximize
revenue. This section explores some of the traditional pricing methods used in the past (ROOS,
MILLS and WHELAN, 2010).

2.1.1 Traditional Fixed Pricing

One of the earliest pricing strategies in the airline industry was fixed pricing, where ticket prices
remained constant regardless of the time of booking or the remaining number of seats. This
fixed pricing strategy can be represented as:

Pfixed = Constant (2.1)

Where Pfixed represents the fixed ticket price.

While fixed pricing provided simplicity, it often resulted in suboptimal revenue generation, es-
pecially during peak demand periods (Zhang, 2021).

2.1.2 Yield Management and Seat Inventory Control

The introduction of yield management revolutionized pricing strategies in the aviation indus-
try (Justin, Payan and Mavris, 2021). Yield management involves dynamically adjusting ticket
prices based on various factors such as booking lead time, demand forecasts, and seat avail-
ability. The core concept of yield management can be mathematically expressed as:

Pyield = f(Demand, Lead Time,Seat Availability) (2.2)

Where:

• Pyield represents the dynamically adjusted ticket price.

• Demand denotes the expected demand for flights.

• Lead Time is the time remaining until the flight’s departure.

• Seat Availability indicates the number of available seats on the flight.

Yield management techniques improved revenue optimization by aligning prices with market
demand and flight occupancy (Gabor, Kardos and Oltean, 2022).
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2.1.3 Competitive Pricing Strategies

In a highly competitive industry like aviation, airlines often engage in competitive pricing strate-
gies to attract passengers. Competitive pricing involves setting ticket prices based on the fares
offered by rival airlines for similar routes (Wang, Zhang and Zhang, 2018). This strategy can
be mathematically represented as:

Pcompetitive = Competitor’s Fare±Markup (2.3)

Where:

• Pcompetitive represents the ticket price based on competitive pricing.

• Competitor’s Fare is the fare offered by a rival airline for a comparable route.

• Markup represents the additional price added to the competitor’s fare.

Competitive pricing aims to capture market share by offering competitive fares, and the markup
is determined strategically to balance revenue and market positioning (Asker, Fershtman and
Pakes, 2022; Betancourt et al., 2022).

2.2 Reinforcement Learning

The method of reinforcement learning, we intend to employ, is founded on the Markov Decision
Process (MDP) as elucidated in Sutton’s seminal work (Sutton and Barto, 2018), which is
visually represented in Fig. 1 (Boutyour and Idrissi, 2023).
In reinforcement learning, the agent isn’t given specific guidance on the actions to execute.
Instead, it learns to identify the most rewarding actions through a process of trial and error
(Sarhadi, Akbari and Karimi, 2022). Our objective at each time step is to determine a policy
π that maximizes the expected cumulative reward along the trajectory, as given by the value
function:

V (s) = E

[ ∞∑
i=0

γiRt+i+1

∣∣∣∣∣ St = s

]
(2.4)

To achieve this, we have to assess the current policy and improve it as necessary (Sutton and
Barto, 2018; Colpas, Patricia, Carrascal, Isabel, Aziz, Melo and Alberto, 2023).

Figure 1: Illustration depicting the dynamic interplay between the agent and its environment.
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2.3 Policy Evaluation

Our initial objective is to evaluate the value function under a specified policy π. This evaluation
is performed according to the Bellman equation (Sutton and Barto, 2018), which is expressed
as follows:

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] (2.5)

We can iteratively compute vπ using the following update equation:

vk+1(s) = Eπ [Rt+1 + γvk(St+1) | St = s] (2.6)

This iterative process is guaranteed to converge to the true value function for any initial value
function (Puterman, 2014; Sutton and Barto, 2018).

2.4 Policy Improvement

After evaluating the value function, our goal is to improve the policy accordingly. To achieve
this, we introduce the q-function under policy π (Sutton and Barto, 2018):

qπ(s, a) = E [Rt+1 + γvπ(St+1) | St = s,At = a] (2.7)

The Policy Improvement Theorem asserts that for any pair of policies π and π′, and for all
states s, if qπ(s, π′(s)) ≥ vπ(s), then it follows that vπ′(s) ≥ vπ(s). Consequently, we have the
opportunity to enhance the policy in the following manner:

π′(s) = argmax
a

qπ(s, a) (2.8)

This policy improvement process is performed for all states (Sutton and Barto, 2018).

2.5 Policy Iteration

Through a repetitive process of policy evaluation and policy improvement, we acquire a series
of consistently enhancing policies and value functions (Sutton and Barto, 2018):

π0
Evaluate−−−−−→ vπ0

Improve−−−−→ π1
Evaluate−−−−−→ vπ1

Improve−−−−→ . . .
Improve−−−−→ π∗

Evaluate−−−−−→ v∗ (2.9)

Here, the arrow Evaluate−−−−−→ indicates a policy evaluation step, while
Improve−−−−→ denotes a policy

improvement step. The entire process is known as policy iteration.

2.6 Value Iteration

A drawback of policy iteration lies in its necessity for policy evaluation in every iteration, a
process that tends to be computationally demanding, particularly in scenarios with extensive
state spaces. To mitigate this, we can truncate policy evaluation after just one sweep (Sutton
and Barto, 2018), resulting in value iteration.
In value iteration, the update formula for the value function is as follows:
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vk+1(s) = max
a

q(s, a)

= max
a

E [Rt+1 + γvk(St+1) | St = s,At = a]
(2.10)

This iterative process is repeated until the value function converges to v∗. Subsequently, the
final policy, denoted as π(s) = argmax

a
q(s, a), is then recorded.

2.7 Generalized Policy Iteration

Generalized policy iteration (GPI), a fundamental concept in reinforcement learning, empha-
sizes the idea of letting policy evaluation and policy improvement interact independently, re-
gardless of the granularity of the two processes, as opposed to ensuring each process com-
pletes before the other begins1. This approach has influenced the development of modern
reinforcement learning algorithms, enabling more flexible and efficient learning paradigms in
dynamic environments. By decoupling policy evaluation and improvement, GPI methods have
paved the way for sophisticated algorithms that can adapt rapidly to changing circumstances,
a crucial feature in complex and dynamic domains like airline ticket pricing (Busoniu, Babuska,
De Schutter and Ernst, 2017).

2.8 Temporal-Difference Learning

In cases where we lack a complete model of the environment, we need to estimate the value
function based solely on experience. Two common methods for this purpose are Monte Carlo
methods and Temporal-Difference (TD) learning (Sutton and Barto, 2018). In this paper, we
will utilize the Temporal-Difference method.
To estimate vπ(St) using only experience, we take the average over all experienced trajectory
values. Temporal-Difference learning employs Gi = [Rt+1]i+γ[vπ(St+1)]i to estimate the value
of the i-th trajectory starting at St, with vπ being the estimated value function at the i-th time
St is visited. This value function can be initialized to any value at the start. We have the
incremental formula for updating the value function (Sutton and Barto, 2018):

vπ(St)← vπ(St) + α[Rt+1 + γvπ(St+1)− vπ(St)] (2.11)

This formula also applies to the q-function (Sutton and Barto, 2018):

qπ(St, At)← qπ(St, At) + α[Rt+1 + γqπ(St+1, At+1)− qπ(St, At)] (2.12)

2.9 Policy Gradient Methods

In scenarios where state spaces are exceedingly large, the task of identifying an optimal policy
or determining the optimal value function turns impractical, constrained by the limitations of
available resources and time constraints. Instead of maintaining a tabular representation of the
value function and action values, policy gradient methods utilize parameterized functions, such
as artificial neural networks (ANNs), to approximate these functions (Sutton and Barto, 2018).
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Policy gradient approaches center their attention on acquiring a parameterized policy that di-
rectly makes action choices without reliance on a value function for guidance. Although it
remains an option to employ a value function for policy parameter learning, it is noteworthy
that such utilization is not mandatory for the process of action selection.
The policy π(a|s,θ) and value function vπ(s,w) are parameterized by vectors θ and w, respec-
tively. The performance measure (objective) is defined as:

J(θ) =

⎧⎨
⎩vπθ

(s0) for episodic tasks

limt→∞ E[Rt|S0, A0:t−1 ∼ π] for continuing tasks
(2.13)

Policy gradient methods aim to maximize this performance measure by performing updates
that approximate gradient ascent in J (Sutton and Barto, 2018)

θt+1 = θt + α∇̂J(θt) (2.14)

In this context, ∇̂J(θt) represents a probabilistic approximation, the expected value of which
closely estimates the gradient of the performance metric in relation to θt (Sutton, McAllester,
Singh and Mansour, 1999).

2.9.1 The Policy Gradient Theorem

The policy gradient theorem, a fundamental concept in reinforcement learning, has been ex-
plored extensively in recent research (Sutton and Barto, 2018). It states that:

∇J(θ) ∝
∑
s

μ(s)
∑
a

qπ(s, a)∇π(a|s,θ) (2.15)

Here, μ is the stationary distribution of states. This leads to the following expression:

∇J(θ) ∝
∑
s

μ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= Eπ

[∑
a

qπ(St, a)∇π(a|St,θ)

]

= Eπ

[
qπ(St, At)

∇π(At|St,θ)

π(At|St,θ)

]
(2.16)

This principle is further extended to encompass a baseline function b(s) (Schulman, Wolski,
Dhariwal, Radford and Klimov, 2017):

∇J(θ) ∝
∑
s

μ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s,θ)

= Eπ

[∑
a

(qπ(St, a)− b(St))
∇π(At|St,θ)

π(At|St,θ)

] (2.17)

This discounted version applies as well:

∇J(θ) ∝ Eπ

[
γt (qπ(St, At)− b(St))

∇π(At|St,θ)

π(At|St,θ)

]
(2.18)
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A logical starting point is to use an estimate of the state value, denoted v̂(St,w), in which w

represents the weight vector to be learned.

Algorithm 1 Proximal Policy Optimization (PPO) Algorithm

1: Input: Policy function π(a|s,θ), Value function estimator v̂(s,w)

2: Define step size α > 0, Clipping parameter ε > 0

3: Initialize Value function parameters w ← 0, Policy parameters θ ← 0

4: loop (for each iteration)
5: Collect set of transitions using policy π(·|s,θ)
6: Compute advantage estimates A(s, a) = R(s, a)− v̂(s,w) � Advantage calculation for

policy improvement
7: Optimize value function w ← w + α∇vLv(w) � Updating value function for better

estimation
8: Calculate policy loss L(θ) =

∑
tmin

(
π(at|st,θ)

πold(at|st,θ)A(st, at), clip(ε, 1− ε)A(st, at)
)

�

Policy loss includes clipping for stable updates
9: Update policy θ ← θ + α∇θL(θ) � Policy parameters update using gradient ascent

10: end loop

2.9.2 Actor-Critic Methods

Recalling the Temporal-Difference method, we use qπ(s, a) = E[Rt+1+γv̂(St+1,w)−v̂(St,wt)|St =

s,At = a] (Sutton and Barto, 2018). By taking a single-sample estimate and selecting v̂(St,w)

as the baseline, we have the following update equation for θ:

θt+1 = θt + αθ (Rt+1 + γv̂(St+1,w)− v̂(St,wt))∇ lnπ(At|St,θt)

= θt + αθδt∇ lnπ(At|St,θt)
(2.19)

As for the weight vector w used for the estimated value function, at each time step t, we aim
to update it by minimizing the squared error [vπ(St)− v̂(St,wt)]

2:

wt+1 = wt − α′w∇ [vπ(St)− v̂(St,wt)]
2

= wt − αw (vπ(St)− v̂(St,wt))∇v̂(St,wt)
(2.20)

Since vπ(s) = E[Rt+1 + γvπ(St+1)|St = s] (Sutton and Barto, 2018), taking a single-sample
estimate gives us the update equation for w:

wt+1 = wt − αw (Rt+1 + γv̂(St+1,w)− v̂(St,wt))∇v̂(St,wt)

= wt − αwδt∇v̂(St,wt)
(2.21)

Actor-critic methods are based on these update formulas, as described in the provided algo-
rithm 2.
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Algorithm 2 Actor-Critic Algorithm

1: Input: Policy function π(a|s,θ) parameterized by differentiable variables
2: Input: State-value function estimator v̂(s,w) with differentiable variables
3: Define learning rates αw > 0, αθ > 0

4: Set Initial parameters θ ← 0, w ← 0

5: repeat (for each episode)
6: Set starting state S (beginning of the episode)
7: repeat (for each step t within the episode)
8: Select A from π(·|S,θ)
9: Execute action A, observe next state S′ and reward R

10: Calculate TD error δ ← R+ γv̂(S′,w)− v̂(S,w)

11: Update critic w ← w + αwδ∇v̂(S,w)

12: Update actor θ ← θ + αθγ
tδ∇ lnπ(A|S,θ)

13: Transition to new state S ← S′

14: until end of episode
15: until convergence or specified condition

Algorithm 3 REINFORCE Algorithm

1: Input: Policy function with differentiable parameters π(a|s,θ)
2: Define step size αθ > 0

3: Set Initial policy parameter θ ← 0

4: for each episode do
5: Set initial state S

6: while not end of episode do
7: Select action a based on π(·|S,θ)
8: Execute action a, observe next state S′ and reward R

9: Update θ as θ + αθγ
tR∇ lnπ(a|S,θ)

10: Update state S ← S′

11: end while
12: end for

3 Methodology

3.1 Problem Formulation

In this section, we formally define the problem of dynamic pricing for airline tickets, considering
customer features and customer responses denoted response after pricing.

3.1.1 Definition of the Pricing Problem

Dynamics pricing constitutes a strategic pricing approach implemented by airlines to enhance
revenue generation through the adaptive modulation of ticket prices, guided by an array of mul-
tifaceted factors. The overarching aim of this endeavor is to ascertain the most advantageous
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fare for each flight, predicated upon a comprehensive assessment of factors including the time
remaining until departure, seat availability, and the unique characteristics of prospective pas-
sengers. Our research primarily aims to establish a reinforcement learning-based approach
for optimizing this pricing strategy through the analysis of historical data.

3.1.2 Mathematical Representation for the MDP problem

To mathematically formulate the problem, we define key components:

• State (St): The state at each time step includes information about the number of days
until the flight, the remaining seats available for sale, and customer features represented
by the vector X. This vector X contains 20 entries generated from various probability
distributions, such as normal distribution and binomial distribution.

• Action (At): The action represents the ticket price chosen for a particular day. It’s a
continuous variable, allowing for a wide range of pricing decisions.

• Reward (Rt): The reward corresponds to the revenue generated on a given day based
on the pricing decision made. It reflects the financial outcome of the pricing strategy.

3.1.3 Features Vector

The features vector X comprises 21 entries, each representing a different customer charac-
teristic. These characteristics are randomly generated and cover a range of factors, including
demographic information, past purchasing behavior, and other relevant features. Table 1 pro-
vides an example of a feature vector X representing a customer’s attributes.

Feature Distribution Values

Age normal [18,90]
Day Left normal [1,120]
Seat Left normal [0,100]
feature i uniform variable
... ... ...
response binary 0 or 1

Table 1: Features vector X representing a customer’s attributes.

3.1.4 Customer Response

Upon proffering a price, designated as ”price,” to a client, the ensuing customer response,
denoted as ”r,” is ascertained. This response is characterized as a binary variable, wherein
r = 1 signifies the acquisition of an airline ticket by the customer, whereas r = 0 signifies
the absence of a purchase. The generation of this response is contingent upon a generalized
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linear model that integrates the customer’s normalized attributes and the aforementioned pre-
sented price. The determination of the response can be expressed through the subsequent
overarching equation:

r = f(β0 + β1x1 + β2x2 + . . .+ βnxn + γprice) (3.1)

Where:

• r is the binary response variable (0 or 1).

• x1, x2, . . . , xn are the normalized customer feature values.

• c is the normalized price.

• β0, β1, β2, . . . , βn are coefficients associated with customer features, with β0 representing
the intercept.

• γ is the coefficient associated with the price.

• f(·) is a link function, typically the logistic function, mapping the linear combination to a
probability between 0 and 1.

In this formulation, the customer features have been normalized to have zero mean and unit
variance to ensure that they are on a consistent scale for modeling. The coefficients βi and γ

are parameters that can be estimated from historical data to model the relationship between
normalized customer features, normalized price, and the likelihood of purchase.
The response is then generated by comparing the calculated probability to a random value from
a uniform distribution, where a probability greater than or equal to the random value results in
a purchase (response = 1), and a probability less than the random value results in no purchase
(response = 0).
This generalized response model with normalized features allows for effective modeling of
customer behavior in response to pricing decisions for airline tickets.

3.2 Generalized Linear Model (GLM) model

In this section, we describe the application of a Generalized Linear Model (GLM) as a funda-
mental component of our pricing strategy. The GLM serves as a key step in modeling customer
responses based on the provided features. Specifically, we choose the logistic function as the
link function in our GLM to handle binary responses (0 or 1) efficiently.
The logistic function, denoted as g(x), is commonly used in GLMs for binary classification
problems. It transforms the linear combination of predictor variables into probabilities between
0 and 1. The logistic function is defined as:

g(x) =
1

1 + e−x
(3.2)

Where: - x represents the linear combination of predictor variables.
In the context of our pricing problem, we use the logistic function to model the probability of a
customer making a purchase (r = 1) given the feature vector X and pricing (price):
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P (r = 1|X, price) =
1

1 + e−βX−γprice
(3.3)

Where: - P (r = 1|X, price) is the probability of a customer making a purchase. - X is the
feature vector representing customer characteristics. - price is the price offered to the cus-
tomer. - β and γ are the model parameters to be estimated during training. Our GLM aims
to learn these parameters (β and α) from the training dataset to accurately predict customer
responses. The trained GLM will serve as a crucial component in our Dynamic Pricing using
DRL algorithms, providing the probability of customer purchase for different pricing scenarios.

3.3 Deep Reinforcement Learning models

In this subection, we delve into the application of DRL models for dynamic pricing in the airline
industry. DRL leverages neural networks and reinforcement learning techniques to optimize
pricing strategies over time. We explore several DRL algorithms tailored to our pricing problem,
including:

• REINFORCE Model: We begin with the REINFORCE algorithm, a policy gradient method
that aims to maximize the expected cumulative reward. We detail its application to dy-
namic pricing and discuss the key components such as the policy network (see Algo.
3).

• Proximal Policy Optimization (PPO) Model: Next, we investigate the PPO algorithm,
which strikes a balance between stability and sample efficiency in policy optimization.
We describe how PPO is adapted to the airline pricing problem, emphasizing its advan-
tages(see Algo. 1).

• Advantage Actor-Critic (A2C) Model: The A2C algorithm combines elements of policy
gradients and value-based methods. We illustrate its utilization in dynamic pricing and
explain the actor-critic architecture used for more effective learning (see Algo. 2).

• Soft Actor-Critic (SAC) Model: SAC introduces a soft actor-critic framework that op-
timizes policies with entropy regularization. We explore how this approach enhances
exploration and discuss its relevance to pricing decisions (see Algo. 4).

• Twin Delayed Deep Deterministic Policy Gradients (TD3) Model : Finally, we examine
the TD3 algorithm, which is an extension of the DDPG algorithm designed for continuous
action spaces. We showcase its application in the airline pricing domain and highlight its
strengths (see Algo. 5).

These DRL models are assessed and compared in terms of their performance, stability, and
suitability for dynamic pricing. Each model contributes to our exploration of optimal pricing
strategies, using knowledge learned from the trained Generalized Linear Model (GLM) to en-
hance decision-making.
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Algorithm 4 Soft Actor-Critic (SAC) Algorithm

1: Input: Policy function with parameters π(a|s,θ)
2: Input: Parameterized value function v̂(s,w)

3: Define learning rates αw > 0, αθ > 0

4: Initialize parameters w ← 0, θ ← 0

5: repeat (for each training iteration)
6: Retrieve batch (s, a, r, s′) from experience replay � Leverage past experiences to

improve learning efficiency
7: Calculate target value y = r + γmina′∼π(·|s′,θ)Q(s′, a′,w) � Target value estimation

with minimization over future actions
8: Minimize value function loss using MSE: LV = E[(y −Q(s, a,w))2] � Optimizing the

value function by reducing prediction error
9: Generate actions for policy update: a ∼ π(·|s,θ) � Sampling actions from the policy for

the current state
10: Formulate policy loss: Lπ = E[α log(π(a|s,θ)−Q(s, a,w))] � Policy improvement by

maximizing expected return and entropy
11: Apply updates to policy and value function parameters
12: until convergence or termination criterion met � Iterate until the model sufficiently learns

the optimal policy

3.4 Performance Metrics

To assess the performance of our dynamic pricing models, we use two critical performance
metrics: the moving average reward generation and convergence speed. By taking into ac-
count both of these metrics, we acquire a comprehensive grasp of the algorithms’ strengths
and weaknesses.

3.4.1 Moving Average Reward

Moving Average Reward is a crucial metric that measures the overall profitability of our pricing
strategies. It provides insights into the efficiency of our DRL models in maximizing revenue.
We calculate the moving average reward by taking the average of the rewards obtained over
a sliding window of episodes. The window size is chosen to smoothen the reward curve and
highlight the model’s ability to consistently generate higher rewards.

3.4.2 Speed of Convergence

The Speed of Convergence measures how quickly our DRL models adapt to dynamic pricing
strategies. It quantifies the number of episodes or iterations required for the model to reach a
stable pricing policy with satisfactory performance. Faster convergence is desirable as it allows
airlines to quickly respond to changing market conditions and customer behaviors.

 International Journal of Artificial Intelligence

Int. J. Artif. Intell. 80 ISSN 0974-0635



Algorithm 5 Twin Delayed Deep Deterministic Policy Gradient (TD3) Algorithm

1: Input: Policy function with differentiable parameters π(a|s,θ)
2: Define step sizes αθ > 0

3: Initialize policy parameters θ ← 0

4: repeat (for each iteration)
5: Retrieve a batch of transitions (s, a, r, s′) from the replay buffer
6: Calculate target value y = r + γmin(Q1(s

′, π(s′,θ)), Q2(s
′, π(s′,θ)))

7: Minimize mean squared error loss to optimize Q-functions
8: Generate action samples for policy update: a ∼ π(·|s,θ)
9: Evaluate policy loss: Lπ = −E[Q1(s, π(s,θ))]

10: Update the policy parameters using gradient descent
11: until convergence or termination criterion is met

4 Experimental Results

4.1 Dataset Generation Process

4.1.1 Synthetic Data Generation Methodology

In this subsection, we describe the method used to generate the synthetic dataset employed
in our experiments. Generating a realistic dataset is crucial for the evaluation of our pricing
strategies using DRL models. We follow a carefully designed procedure to create a dataset
that captures various aspects of customer behavior and response to airline ticket prices.
We begin by defining the underlying features that represent each customer. These features
include gender, age, days left until the flight, seat availability, time of day (day or night), and
16 different random variables, which incorporate price and other factors affecting customer
decisions. These features are represented as an array denoted by x with 21 entries, each
generated randomly from various probability distributions, including normal and binomial dis-
tributions.
After generating the feature vectors for customers, we apply a linear formula to simulate cus-
tomer responses, which is added to our features vector.

4.1.2 Features and Characteristics of the Synthetic Dataset

The dataset is meticulously crafted to mirror real-world airline ticket purchase situations, en-
compassing an extensive array of features that hold sway over customer decisions.
Several pivotal features incorporated in the dataset comprise:

• Gender: Representing the gender of the customer.

• Age: Reflecting the age of the customer.

• Days Left Until Flight: Indicating the number of days remaining until the flight’s departure.

• Seat Availability: Describing the availability of seats on the flight.
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• Time of Day: Categorizing the time as day or night.

• 16 Random Variables: Incorporating various factors, including price, that affect customer
choices.

Additionally, the dataset includes the customer responses (0 for not purchasing, 1 for purchas-
ing), which are generated based on a linear model. We generate a total of 3000 entries and
save the data as a CSV file. This synthetic dataset serves as the foundation for evaluating
the performance of our dynamic pricing strategies using DRL models and GLM model as a
response predictor for all new customers.

4.2 Experimental Setup

In this subsection, we describe the experimental methodology employed to assess the perfor-
mance of our models based on DRL algorithms. Our experiments are conducted as shown in
Fig. 2.

Figure 2: Our experimental process.

4.2.1 Models:

Our experiments are conducted in a systematic manner to rigorously evaluate the effective-
ness of our proposed pricing strategies. Figure 2 shows our experimental process, which is
structured as follows:

1. Data Preparation: We utilize the synthetic dataset generated in Section 4.4.1 as the ba-
sis for our experiments. This dataset includes customer features and their corresponding
responses.

2. Fitting the GLM Model: Before training the DRL models, we fit a Generalized Linear
Model (GLM) to the dataset. The GLM helps map customer features to responses using
the chosen link function, which in our case is the logistic function.

3. Training DRL Models: Building upon the Generalized Linear Model (GLM) as a founda-
tional reference, our next step involves the training of a suite of DRL models, encompass-
ing REINFORCE, PPO, A2C, SAC, and TD3. These models are systematically trained
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on our synthetic dataset, equipped with comprehensive customer features and their cor-
responding responses. The central objective of this training process is to empower the
models with the ability to make dynamic pricing decisions while prioritizing revenue max-
imization.

4. Performance Evaluation: We measure and compare the moving average reward gener-
ated by each pricing model. Additionally, we analyze the convergence speed of the DRL
models.

Through these experiments, we aim to demonstrate the capabilities of our DRL-based pric-
ing strategies in optimizing revenue for airline ticket sales while considering various customer
features.

PPO A2C REINFORCE TD3 SAC

Hyper-parameters

actor lr = 1e-4 actor lr = 1e-4 actor lr = 1e-4 actor lr = 1e-4 actor lr = 1e-4
critic lr = 1e-4 critic lr = 1e-4 gamma = 0.99 critic lr = 1e-4 critic lr = 1e-4

gamma = 0.99 gamma = 0.99 num itr = 3000 gamma = 0.99 gamma = 0.99
num itr = 3000 num itr = 3000 episode size = 300 num itr = 3000 num itr = 3000

episode size = 300 episode size = 300 episode size = 300 episode size = 300
batch size = 5 polyak = 0.995

num updates per itr = 5
clip = 0.5

Table 2: Hyper-parameters used for the experiments.

4.2.2 Training and Evaluation

To train and evaluate our DRL models, we employed a high-performance computing setup.
The training process was carried out on a GPU for efficient computation. Specifically, we take
advantage of an NVIDIA GeForce RTX 4070 GPU, which offers considerable computational
power for training neural networks and running simulations.

4.3 Results

In this subsection, we present the results obtained from our experiments, showcasing the
performance of various DRL models in dynamic pricing scenarios. We evaluate the models
based on multiple metrics, including reward optimization, convergence speed, and training
time.

4.3.1 Reward Comparison

Our experiments demonstrate the effectiveness of the DRL models in optimizing reward for
airline ticket sales. Figure 3 illustrates the reward trajectories for each model over the course
of training iterations. As observed, TD3 exhibits remarkable performance, achieving rapid
reward growth. SAC follows closely, displaying a competitive reward increase throughout the
training process. A2C and PPO show consistent improvements, albeit at a slightly slower pace.
REINFORCE, while effective, exhibits a comparatively slower revenue optimization trend.
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(a) A2C model training (b) PPO model training

(c) REINFORCE model training (d) SAC model training

(e) TD3 model training

Figure 3: Moving Average Reward of DRL models
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4.3.2 Convergence Speed

Analyzing the convergence speed of the models provides crucial insights into their efficiency.
Figure 3 illustrates the convergence behavior of each model. Remarkably, TD3 stands out as
the fastest converging model, reaching optimal pricing strategies swiftly. SAC and A2C follow
suit, showcasing rapid convergence. PPO exhibits commendable convergence speed, albeit
slightly slower. REINFORCE, while effective, converges at a comparatively moderate pace.

4.3.3 Training Time

Efficient use of computational resources is capital in practical applications of DRL models.
Table 3 summarizes the training times for each DRL model. Notably, TD3 demonstrates note-
worthy efficiency, requiring only 5 hours and 36 minutes for training. SAC follows closely, with
a training time of 6 hours and 53 minutes. A2C, while highly effective, required 8 hours and 16
minutes for training. PPO and REINFORCE, while delivering competitive results, necessitated
12 hours and 49 minutes and 11 hours and 32 minutes, respectively.

REINFORCE PPO A2C SAC TD3

Training time 11h32min 12h49min 8h16min 6h53min 5h36min

Table 3: Training time for DRL models.

5 Discussion

In this section, we explore the ramifications and subtleties of our discoveries offering context
and valuable insights, into the outcomes.

5.1 Model Performance Discrepancy

The disparities in performance observed among the DRL models emphasize the critical role
of algorithm selection in dynamic pricing strategies employing DRL techniques. TD3’s swift
convergence and effective reward optimization position it as a compelling option for real-time
pricing applications, ensuring agile and responsive decision-making. SAC and A2C, exhibiting
a harmonious blend of convergence speed and reward optimization, provide a dependable and
balanced alternative for dynamic pricing implementations. On the other hand, PPO, although
effective, might necessitate additional fine-tuning, particularly in tailored airline pricing contexts,
owing to its relatively slower convergence speed. Careful consideration of these factors is
pivotal when selecting the most suitable DRL model for specific pricing scenarios, ensuring
optimal performance and responsiveness in dynamic pricing strategies.

5.2 Computational Efficiency

The considerable disparity in training durations across the models highlights the crucial aspect
of computational efficiency. TD3’s ability to yield competitive outcomes within a significantly
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reduced timeframe underscores its practical applicability, especially in resource-intensive set-
tings. This rapid training capability positions TD3 as a feasible choice for airlines aiming for
agile and adaptive pricing approaches. Additionally, SAC, while requiring a slightly longer
training duration, strikes an appealing balance between efficiency and performance, making it
a compelling option in the realm of dynamic pricing strategies.

6 Future Work

In future research, there exist several promising avenues that warrant exploration, particularly
within the context of airline competitors’ pricing environments and the application of Multi-Agent
Reinforcement Learning (MARL) approaches. One critical direction involves the refinement
of DRL models through the adoption of more intricate architectures and advanced training
methodologies. This evolution equips these models to effectively capture nuanced patterns in
customer behavior, enhancing their adaptability within the competitive landscape.
Furthermore, integrating real-time data streams, a key consideration in airline pricing, can aug-
ment pricing strategies by ensuring responsiveness to the ever-fluctuating market dynamics
shaped by both competitors and customer preferences. Investigating how exogenous factors,
including economic indicators and global events, influence customer choices is essential for
the development of robust pricing strategies in an environment marked by dynamic competi-
tive forces.
Expanding the horizons of DRL techniques, these approaches hold promise not only for airline
ticket sales but also for a range of other industries, encompassing hospitality, e-commerce,
transportation services, and general product pricing. Assessing the transferability and gener-
alizability of MARL-based pricing models across these diverse domains constitutes a signif-
icant step toward advancing the field of dynamic pricing within highly competitive markets.
It is also true that these techniques can be adapted in various fields of application such
as what was developed for example in (Abourezq and Idrissi, 2014; Abourezq, Idrissi and
Yakine, 2016; Abourezq and Idrissi, 2015; Abourezq, Idrissi and Rehioui, 2020; El Handri and
Idrissi, 2020b; El Handri and Idrissi, 2020a; El Handri and Idrissi, 2020c; Er-Rafyg, Abourezq,
Idrissi and Bouhouch, 2022; Idrissi, Li and Myoupo, 2006; Idrissi, 2012b; Idrissi, 2012a; Idrissi
and Fedoua, 2014; Idrissi and Abourezq, 2014; Idrissi, Rehioui, Laghrissi and Retal, 2015;
Idrissi and Zegrari, 2015; Idrissi, El Handri, Rehioui and Abourezq, 2016; Essadqi, Idrissi
and Amarir, 2018; Laghrissi, Retal and Idrissi, 2016; Retal and Idrissi, 2018; Rehioui, Idrissi,
Abourezq and Zegrari, 2016; Rehioui and Idrissi, 2017; Rehioui and Idrissi, 2019; Zankadi,
Hilal, Idrissi and Daoudi, 2022; Zankadi, Idrissi, Daoudi and Hilal, 2023; Zegrari, Idrissi and
Rehioui, 2016; Zegrari and Idrissi, 2020). We firmly believe that these DRL technologies and
their adaptations can revolutionize several socio-economic, environmental and industrial sec-
tors.
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7 Conclusion

This study presents a comprehensive analysis of Deep Reinforcement Learning (DRL) mod-
els applied to dynamic pricing within the airline industry. Through extensive experimentation,
we evaluated and compared five DRL algorithms, namely REINFORCE, PPO, A2C, SAC, and
TD3. Our findings highlight the efficiency and adaptability of these models in optimizing rev-
enue while considering diverse customer features. TD3 emerged as a standout performer,
demonstrating swift convergence and suggesting its potential for real-world applications in air-
line ticket pricing. The comparison of training times provides practical insights into the com-
putational resources required for deploying these models effectively. This research not only
provides valuable benchmarks for DRL-based pricing strategies but also underscores the sig-
nificance of machine learning techniques in revolutionizing revenue management practices. As
industries continue to evolve, leveraging advanced AI methods like DRL remains essential to
staying ahead of the market curve. The insights gained from this study pave the way for future
advancements in dynamic pricing methodologies and represent a promising trajectory for the
intersection of artificial intelligence and business strategy.
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