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ABSTRACT

Deep learning techniques have recently shown remarkable effectiveness in the semantic
segmentation of natural and remote sensing (RS) images. However, despite advances in
conventional networks, accurate detection and segmentation of small objects in complex
scenes remains a major challenge. The detection and segmentation of small features, such
as vehicles and pedestrians, is complex due to the occlusion and density of contextual infor-
mation. In this paper, we propose an enhanced UNet architecture, called Optimal Transport
Maps (OTM-UNet), which uses optimal transport layers to compute learned transport maps
that align feature maps from both the encoder and decoder. This alignment is critical for
preserving spatial orientation and improving semantic consistency during segmentation.
Optimized transport layers are strategically placed deep in the decoder and perform ex-
haustive transformations on feature maps sliced from encoders before concatenation. The
resulting transport maps bridge the gap between encoder and decoder feature distributions,
facilitating effective information transfer and preserving spatial detail throughout the archi-
tecture. The performance of OTM-UNet was evaluated using two publicly available Remote
Sensing Imagery datasets, and a comprehensive quantitative and qualitative comparison
was made with other models. Results from the evaluation of the Vaihingen dataset showed
that the proposed model achieved an impressive average F1 score of 90.90% and an accu-
racy of 93.17%. In addition, the visual qualitative results showed a significant reduction in
object class confusion, improved ability to segment different scales of object, and improved
object integrity, highlighting the model’s effectiveness in addressing small objects in remote
sensing segmentation challenges.

Keywords: UNet, Unmanned aerial vehicle (UAV), Semantic segmentation, Small objects,
Optimal transport maps.

Computing Classification System : Computing methodologies - Artificial intelligence -
Computer vision - Computer vision problems - Image segmentation.

1 Introduction

Aerial imagery is important in various fields where complete images or landscapes are re-
quired, supporting the execution of key applications such as remote sensing data analysis
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(Camps-Valls and Bruzzone, 2009). Remote sensing applications cover several domains, from
urban planning, where having a global vision of the spaces is highly important for urban devel-
opment (Navalgund, Jayaraman and Roy, 2007; Triharminto, Adji and Setiawan, 2013), to envi-
ronmental monitoring (Khriss, Elmiad, Badaoui, Barkaoui and Zarhloule, 2024b; Long, Alexan-
der and Huong, 2021), allowing an in-depth evaluation of ecological situations. It is significant
because it provides complex information on a large scale and helps professionals arrive at
knowledgeable perspectives. Aerial imagery is indispensable for critical tasks such as topo-
graphic mapping, assessing environmental changes, and efficiently and resourcefully manag-
ing urban populations, while panoramic tools are limited (Barbarella, Cuomo, Di Benedetto,
Fiani and Guida, 2019). Currently, it not only influences the better visualization of people
but is also involved in a strategic choice of environmental protection and intended urban de-
velopment (Shao, Song, Mu, Tian, Chen, He and Kim, 2021). The recent emergence of deep
convolutional neural networks has formed the industry standard for image classification, detec-
tion, and segmentation tasks significantly impacting a complicated domain like remote sensing
(Hemanth and Estrela, 2017). The fact that these networks have been adopted is an interesting
trend showing their great efficiency in several disciplines (Kim and Kim, 2017; Khriss, Elmiad,
Badaoui, Barkaoui and Zarhloule, 2024a; Huong, Long, Kozlov, Tomin and Sidorov, 2021).
This visibly reflects the influence of their wide-ranging ability to master sophisticated functions
regarding aerial imaging (Li, Zhang, Xue, Jiang and Shen, 2018; Li, Wang, Zhang, Zhang,
Zhao, Xu, Ben and Gao, 2022; Yuan, Shi and Gu, 2021). Despite their suitability for the task,
the recognition and segmentation of small objects in large scenes have been a challenging
problem (Liu, Sun, Wergeles and Shang, 2021). Small objects with limited spatial extent and
complicated details have always been a problem for standard segmentation techniques (Tong,
Wu and Zhou, 2020). Because these objects are fixed and loaded with dense representations,
they have a limited spatial presence of their own, along with a complexity that requires certain
special techniques to bring their importance to the fore.

In this context, our work has contributed to the understanding of the special features of small
object segmentation in aerial imagery. Vehicles, pedestrians, and other small details are vital
to complete the overall view, such as traffic monitoring disaster response or precision agricul-
ture. Due to the size, occlusion and dense variety of contextual information so many objects
are hard to segment accurately. We propose a U-Net architecture version with an enhanced
feature alignment mechanism by implementing optimal transport layers. These layers compute
learned optimal transport maps which allow aligning feature maps from the encoder as well as
the decoder. This alignment is crucial to maintain the spatial orientation and enhance semantic
consistency when upsampling. Deep into the decoder, after each transposed convolution oper-
ation optimized transport layers are carefully positioned and perform exhaustive transformation
of feature maps cropped from encoders before concatenation. The gained optimum transport
maps minimize the gap between encoder and decoder feature distributions, thus facilitating
the appropriate fusion of combined features before further proceeding with more decoding lay-
ers. This approach of relating alignment strategies to features is identified as essential for
enhancing a general performance in the network, transmitting effective information transfer,
and maintaining appropriate preservation of spatial detail throughout the architecture.
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2 Related Works

2.1 Fully Convolutional Networks

Fully Convolutional Networks have made a significant impact on semantic segmentation, which
involves classifying each pixel in an image. Several architectures have been developed for
FCNs, including those based on ResNet(He, Zhang, Ren and Sun, 2016) and DenseNet(Huang,
Liu, Van Der Maaten and Weinberger, 2017). One notable architecture is FCN-8s(Long, Shel-
hamer and Darrell, 2015). It introduces skip connections from lower levels, combining high-
level context with low-level details to improve segmentation quality. The result is a pixel-wise
classification that provides a comprehensive segmentation of the image.

2.2 Encoder-decoder architecture

Segmentation tasks are one of the strengths associated with encoder-decoder models, which
form a class of neural networks. Segmentation of medical images is usually performed us-
ing UNet(Ronneberger, Fischer and Brox, 2015), a well-known encoder-decoder model. This
encoder-decoder model is also remarkable in image generation and object detection, so with
the emergence of models that include MA-Unet(Cai and Wang, 2022) and SegNet(Badrinarayanan,
Kendall and Cipolla, 2017). A variety of encoder-decoders, such as PSPNet(Zhao, Shi, Qi,
Wang and Jia, 2017) and DeeplLabV3(Chen, Zhu, Papandreou, Schroff and Adam, 2018),
aim to improve accuracy by enlarging entire receptive fields. PSPNet uses a Pyramid Pooling
Module (PPM) to collect additional global information. The Adaptive Feature Fusion UNet AFF-
UNet(Wang, Hu, Shi, Hou, Xu and Zhang, 2023) improves semantic segmentation precision
of remote sensing images by using dense skip connections, adaptive feature fusion, channel
attention module, and spatial attention model. These operations enable the model to capture
interdependence between representations on feature maps.

2.3 Attention mechanism

The addition of attention mechanisms has greatly improved the efficiency of neural networks,
especially in image segmentation tasks. With these mechanisms, models are able to focus on
specific regions in the input, improving their performance in tasks that require spatial hierar-
chies and understanding of relationships. SE-UNet(Hu, Shen and Sun, 2018) (Squeeze-and-
Excitation) adds a squeeze and excitation block to the classic UNet. This block rescales the
channel-wise responses of the functions in a way that takes into account the interdependen-
cies between channels. This allows the network to pay more attention to informative features,
leading to better segmentation results. DANet(Fu, Liu, Tian, Li, Bao, Fang and Lu, 2019) (Dual
Attention Network) provides a dual attention mechanism that includes both position and chan-
nel association to capture global dependencies in both spatial and channel dimensions. This
bidirectional attention enhances the model’s ability to focus on important details, thus improving
segmentation results. However, BAM(Park, Woo, Lee and Kweon, 2018) (Bottleneck Attention
Module) is an attention module that can be integrated into network architectures. It generates
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separate channel and spatial attention maps. After combining these attention maps, the fea-
ture map is rescaled using them as a mechanism to focus on the most important features for
better overall accuracy.

2.4 Remote sensing image semantic segmentation

Semantic segmentation of remote sensing images has made tremendous progress with many
different and innovative models. CAS-Net, as discussed in (Yang, Wu, Zhang, Zhang, Chen
and Gao, 2023), is a significant development that performs coordinate attention (CA) and SPD
convolution simultaneously. In terms of architecture, this approach marks a paradigm shift from
traditional stepwise convolution with an added pooling layer to ensure that detailed information
is preserved during feature extraction. The LPCUNet model (Liu, Wu, Bao and Zhong, 2023)
adds to the landscape by focusing on a lightweight pure CNN UNet designed for urban scenario
images. This model uses a large convolutional kernel to efficiently capture global context, and
a simple fusion module to dynamically combine local and global features. Hi-ResNet, as pro-
posed in (Chen, Fang, Yu, Zhong, Zhang and Li, 2023), is a high-resolution remote sensing net-
work with a number of efficient design structures such as the funnel module, multi-branch mod-
ule, and feature refinement module. On the other hand, a strategy to improve popular seman-
tic segmentation network structures by merging ResNet-50 with a transformer hybrid model
investigated in (Li, Du, Li et al., 2023) suggests a comprehensive approach to spatial distance
correlation modeling and maintaining hierarchical nature. The proposed novel Transformer
layered architecture, (Chen, Liu, Zhao, Huang and Yan, 2023), couples with CNN through
the application of feature dimensionality reduction and a Transformer-style convolutional neu-
ral network module to achieve both shallow or deep features effectively. (Wang, Wang, Yang,
Wang, Su and Chen, 2022) CFAMNet proposes a class feature attention mechanism integrated
into an improved architecture of the Deeplabv3 network to solve typical challenges related
to remote sensing images. In (Abdollahi, Pradhan, Shukla, Chakraborty and Alamri, 2021),
MCG-UNet and BCL-UNet present new deep convolutional models for multi-object segmenta-
tion, where hewer presents the proposed feature of multi-level context gating and integrates
bi-directional ConvLSTM at the same time. (Liu, Mi and Chen, 2020) Address VHR segmenta-
tion with a multi-level approach and scale-feature attention module. The SSAtNet (Zhao, Liu,
Li and Zhang, 2021) proposes an end-to-end attention-based semantic segmentation network,
which includes a pyramid attention pooling module for adaptive feature refinement, focusing on
channel-wise and spatial path attentions. The multipath encoder structure in (Yang, Li, Chen,
Chanussot, Jia, Zhang, Li and Chen, 2021) is designed to build features by providing a compre-
hensive feature fusion mechanism, the multipath attention-fused blocks. The integrated DCNN
proposed in (Su, Li, Ma and Gao, 2022) includes DenseNet, U-Net, Diluted Convolution, and
DeconvNet for semantic segmentation to capture subtle details as well as context. TdPFNet
(Gu, Hao, Chen and Deng, 2021) is an up-down pyramid fusion network for high-resolution
remote sensing semantic segmentation, which presents a multi-source feature extractor, a top-
down pyramid fusion module, and also comes with its decoder. SCAttNet (Li, Qiu, Chen, Mei,
Hong and Tao, 2020) presents an end-to-end semantic segmentation network that combines
lightweight spatial and channel attention modules for adaptive feature refinement. Therefore,
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the combination of PSPNet with DeepLabV3 and U-Net an adaptive feature selection mod-
ule in (Xiang, Xie and Wang, 2021) presents a strong approach to semantic segmentation.
MFFANet (He, Zhou, Zhao, Zhang, Yao, Liu and Li, 2021) is about shallow semantic segmen-
tation that combines multiscale feature fusion and attention correction. R2SN (Wang, Wu, Nie
and Huang, 2021) follows the classical encoding-decoding paradigm with convolutional layers
present in both, which allows it to capture more local information. They include multiscale
feature fusion and alignment in MFANet (Wang, Sun and Zhao, 2020), which uses a fully con-
volutional network, a multi-layer feature fusion block, and the result of building one on top of
the other in an encoder. Scale-aware segmentation is addressed by SaNet (Wang, Zhang,
Li, Duan, Meng and Atkinson, 2021) through its DCFPN module, which consists of a densely
connected feature network. (Zheng, Huan, Xia and Gong, 2020) In EaNet, they developed a
separate end-to-end edge-aware neural network for urban scene semantic segmentation and
it also includes an LKPP module to acquire rich multi-scale context.(Liu, Zhu, Cao, Chen and
Lu, 2021) propose an adaptive multi-scale module as well as the adaptive fuse module that
includes channel attention and spatial attention to facilitate feature fusion. Finally, the efficient
Hybrid Transformer EHT proposed in (Wang, Fang, Zhang, Li and Duan, 2021) implements a
real-time urban scene segmentation by using a CNN-based encoder and a transformer-based
decoder for learning globally localized tasks with less computation. Many of these models em-
body a variety of strategies and innovations that push the boundaries of what can be achieved
in semantic segmentation with remotely sensed images.

3 Method

The workflow defined in this paper comprises three main phases, as shown in Figure 1. The
first phase is data pre-processing, mainly focusing on image cropping and splitting of datasets.
The second is the training, validation, and testing of models. The final section is related to the
analysis and evaluation of the obtained results during experiments.

We propose a new semantic segmentation architecture called OTM-UNet 2 which is designed
for small object segmentations in Remote Sensing images. As an innovative approach, we
make use of learned optimal transport maps to address the problems related to aligning fea-
tures posed by different scales within the network. The core structure of OTM-UNet is based
on the UNet model that has encoder, bottleneck, and decoding with skip connections which
makes a good base for effective feature extraction. This is a major change as the use of dy-
namically learned optimal transport maps for alignment features between encoder and decoder
effectively reduces disparities in distributions.
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Figure 1: The paper workflow.

3.1 OTM-UNet Architecture
3.1.1 Encoder

The encoder in the OTM-UNet architecture 2 is essential for capturing the hierarchical features
of the input image. The encoder consists of a chain of double convolutional blocks followed
by max-pooling layers that systematically reduce the resolution to transform the input data into
abstract, high-level representations. Each double convolution block includes convolution, batch
normalization, and ReLU activations on the features to improve them level by level. Subsequent
max-pooling layers effectively reduce spatial dimensions, allowing the model to focus on more
salient features. The output of the encoder is a pyramidal arrangement of features, with each
layer capturing information at different levels of abstraction. This hierarchical structure provides
the basis for the following decoding steps in the OTM-UNet model.

3.1.2 Decoder

The decoder 2 is a set of up-transpose layers, double convolution blocks, and optimal transport
layers in which the feature maps are systematically expanding while refining representations.
The up-transpose layers carry out a per-pixel procedure to ensure that the model can recover
spatial information that was lost during down-sampling. Each up-sampled feature map is then
merged with the corresponding encoder features and optimized transport modification to en-
hance feature matching. Then, double convolution blocks work on the fused features and
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enhance their ability to capture complicated details. During the completion of these series op-
erations, a segmented output is presented that refines and sharpens upon giving an in-depth
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Figure 2: OTM-UNet Architecture.

3.1.3 Optimal transport map

The integration of optimal transport maps is a critical feature of the unique architecture in the
OTM-UNet model for semantic segmentation. Optimal transport maps are perfectly squeezed
into the UNet framework to solve scale misalignment issues and enhance feature alignment
at different levels of abstraction. This integration takes place in the decoder, at various stages
of upsampling features from previous layers to be combined with the encoder’s feature. The
choice to exploit optimal transport maps arises from the fact they can offer a proper scheme for
feature alignment, enabling model information optimization transmission across scales. This
decision is particularly applicable in cases of semantic segmentation tasks for remote sensing
imagery where it is crucial to capture the context at different scales.

In semantic segmentation, the capability of a model to recognize and distinguish objects is con-
nected with accurate feature alignment across scales and contexts. Traditional convolutional
neural networks (CNNs) are good at local feature extracting but fail to align global contextual
information (Liu, Sun, Wergeles and Shang, 2021). We get around this problem through the
use of optimal transport maps that function as a transformational conduit enabling detailed
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information to be effortlessly taken across channels.

Figure 3 shows the process of the optimal transport map. It starts with an input feature map,
denoted as z, with dimensions dx h xw. This input feature map is transformed by a learned ma-
trix, denoted as T'(x), which is initially an identity matrix but evolves through mapping - the use
of an identity matrix is primarily attributed to its simplicity and adaptability. The identity matrix,
characterized by ones on the main diagonal and zeros elsewhere, presents a straightforward
and uncomplicated structure that serves as an excellent starting point for the learning process.
It imposes no initial transformation on the input features, allowing the model to commence
from a neutral point without any bias introduced by the initial transformation. Furthermore, the
identity matrix’s adaptability is a significant advantage. It enables the model to progressively
adapt the optimal transport map parameters during training, thereby capturing the intricate re-
lationships between channels for improved performance -. The transformation results in an
output feature map, denoted as u. This process rearranges the dimensions of the matched
features to align them for concatenation properly. The down-sampling process is connected to
the up-sampling process by a skip connection, which indicates that certain features or data will
be bypassed during processing to be used later. After the up-sampling process, the adjusted
features are concatenated with the up-sampled features from the corresponding layer in the
encoder. This entire process enhances the ability of the model to capture context and detail
from different scales in the decoding process.
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R Transformation IR,  T(x Mapping | | @

N . N p 2

= l_‘__V) \‘ =D = s

B 2

bo,

=

Donwsampling Upsampling
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Figure 3: Detailed composition of the OTM.

+ Optimal transport layer forward pass : Within the optimal transport layer forward
pass, the feature map adjustment process y is essential to rectify the scale misalignment
problems inherent in semantic segmentation tasks. We consider an input tensor = char-
acterized by dimensions h x w x d and introduce a learnable optimal transport matrix 7’
with dimensions d x d. The fitting operation is formulated as follows:
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d
Yije = Z Tijk - Tek (3.1)
k=1
This formula defines the accurate fitting of each element y;;. into the resulting tensor y.
The adjustment is performed by a summation process through the channels (k) of the
input tensor z. The individual element z;;, is multiplied by the corresponding element
T, of the optimal transport matrix. This per-element adjustment mechanism ensures
optimal transport of information across various channels, promoting better feature align-
ment and ameliorating the challenges associated with scale mismatches in the semantic
segmentation process.

Shared optimal transport map initialization : A key step in implementing the learn-
ing process within the OTM-UNet architecture is the initialization of the shared optimal
transport map. This initialization consists of defining the optimal transport map 7" as an
identity matrix.

Tij = by (3.2)

In this equation, ¢;; represents the Kronecker delta function, ensuring that each element
T;; in the matrix 7" is 1 when ¢ = j (on the main diagonal) and 0 otherwise. This choice of
initialization designates T as an identity matrix, indicating that, initially, no transformation
is imposed on the input features. The shared attribute of this optimal transport map un-
derscores its consistent application across different decoding stages, fostering uniformity
in the learning process of feature alignments. This deliberate initialization strategy es-
tablishes a common starting point, allowing the model to progressively adapt the optimal
transport map parameters through training, capturing the intricate relationships between
channels for enhanced semantic segmentation performance.

Permutation and concatenation : After obtaining the matched feature maps y charac-
terized by dimensions h x w x d, @ meticulous permutation and concatenation procedure
is implemented to optimize the features for eventual concatenation with upsampled coun-
terparts. This multi-step process begins with a permutation operation (y.;; = vijc) that
strategically rearranges the dimensions of the matched features. The permutation aligns
the channel dimension (c) with the second spatial dimension (j), ensuring proper syn-
chronization for subsequent operations. Next, the adjusted features are concatenated
with the upsampled features derived from the corresponding layer in the encoder. This
concatenation facilitates the fusion of information across different scales, enhancing the
model’s ability to capture contextual details during the decoding phase. By integrating
matched and upsampled features, the model can effectively refine its understanding of
the input, fostering a comprehensive representation that spans multiple scales for im-
proved semantic segmentation performance.

Parameter update : The parameter update process, an integral part of the training
dynamics, involves the adaptive refinement of the elements within the optimal transport
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map 7' through the mechanism of backpropagation. This complex adaptation is funda-
mental for the continuous learning of the model during training iterations. The specifics
of this update depend on the chosen optimization algorithm, and the crux is to iteratively
modify the elements of 7" to minimize a given loss function. The essence of this dynamic
adaptation is to steer the optimal transport map toward configurations that facilitate the
most effective feature alignments for the semantic segmentation task. During backprop-
agation, gradients are computed to the loss function, and the elements of T" are updated
accordingly to minimize the discrepancy between predicted and ground truth segmenta-
tion results. This dynamic adaptation mechanism allows the model to iteratively fine-tune
its feature adaptation strategy by learning optimal channel interactions. During training,
the optimal transport map evolves to capture intricate relationships between channels, re-
sulting in an increasingly refined and effective representation of semantic features. This
continuous refinement contributes to the model’s ability to optimize its performance over
time, ultimately improving its ability to perform semantic segmentation tasks.

3.2 Datasets
3.2.1 Vaihingen dataset

The Vahingen dataset, referenced as (International Society for Photogrammetry and Remote
Sensing, n.d.), serves as a testing ground for digital aerial camera evaluations conducted by the
German Society for Photogrammetry and Remote Sensing (DGPF). The dataset also includes
airborne laser scanner (ALS) data consisting of 10 ALS strips collected by Leica Geosystems
using a Leica ALS50 system with a 45 °field of view positioned 500 m above ground. The ALS
data captures multiple echoes and intensities, with strip adjustment applied in the background
to correct for systematic errors within the ground reference. Designed primarily for analytical
purposes, the Vaihingen dataset serves as a benchmark for evaluating urban object extraction
techniques.

3.2.2 Semantic drone dataset

This dataset (of Computer Graphics and Vision, n.d.) is an extensive database of images
captured from the air intended for increasing semantic understanding regarding urban settings.
The dataset provides a distinctive view that contains over 20 house collectors from different
altitudes between and above meters. The imagery is created with high resolution, using a
6000 x 4 pixels 24 megapixels.

Table 1: Details regarding datasets.

Dataset Platform Type of View | Flight Altitude
Vaihingen dataset Airborne Laserscanner | aerial-view 500 m
Semantic drone dataset | UAV bird-view 5-30 m
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3.3 Experimental setting details
3.3.1 Training Settings

The study used a robust computing configuration to train convolutional neural networks (CNNSs),
using two NVIDIA Tesla T4 GPUs, each equipped with 16 GB of memory. The loss function
chosen was the cross-entropy loss, and the optimization used the Adam optimizer, renowned
for its efficiency in optimizing neural networks, with a learning rate fixed at 1 x 10~* (0.0001).
The experiments were carried out in a POSIX-compatible environment with 28 GB of RAM.
The TensorFlow 2.2 software was chosen for modeling in the experiments. This combination
of hardware and software provides a well-organized and efficient infrastructure for research
and experimentation.

3.3.2 Evaluation criteria

Evaluating the performance of the different approaches includes five key measures: overall ac-
curacy (OA), F1 score per class, average F1 score, mean intersection over union (mloU), and
Dice coefficient. The OA quantifies the accuracy of pixel identification over the entire dataset.
The F1 score per class evaluates the harmonic mean of precision and recall for individual
classes, providing a detailed measure of performance. The average F1 score provides an
overview by taking the average of the F1 scores across all classes. mloU measures the aver-
age correlation between actual and predicted results at the class level. The introduction of the
Dice coefficient further enhances the evaluation by capturing the agreement between predicted
and actual segmentations, providing a comprehensive assessment of the overall performance
of the model.

Number of Correctly Classified Pixels
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2 x TP
N 3.9
Dice = oS b Y FP T FN (3.9)

4 Experimental result and analysis

4.1 Compare with state-of-the-art methods

we provide a comprehensive comparison with other semantic segmentation methods. This
includes our proposed OTM-UNet, which we benchmark with well-known architectures: UNET,
DeeplLabv3, DANet, PSPNet, and AFF-UNET. Our evaluation uses the Vaihingen dataset for
evaluation purposes. Table 2 serves as a comprehensive overview, revealing that the proposed
method is the leading performer. It achieves the highest scores across all key metrics: Avg.
F190.90%, OA 93.17%, mloU 77.69%, and Dice coefficient 89.5%. These results underscore
the proposed method'’s robust capability in accurately delineating objects within the complex
Vaihingen dataset.

A comparative analysis with baseline models, particularly noting the lower performance of
UNet, emphasizes the pivotal role of advanced architectures in semantic segmentation tasks.
Noteworthy is the proposed method’s consistent outperformance DeeplLabv3, DANet, and
PSPNet. This underscores its effectiveness in capturing intricate spatial relationships and
semantic details inherent in the dataset.

Delving deeper into the per-class F1 scores presented in Table 3 provides insights into the
proposed method’s performance across specific object categories. The method consistently
excels in segmenting Buildings, Roads, and Cars, showcasing its versatility in handling diverse
structures. While AFF-UNet demonstrates proficiency in Trees, the proposed method remains
competitive and, notably, surpasses AFF-UNet in other classes. This balanced performance
across various object categories highlights the adaptability of the proposed method. The ob-
served improvements in segmenting Trees and Cars with the proposed method indicate its
capacity to handle a spectrum of complex object classes.

Table 2: Performance comparison between our proposed method and different approaches on
the Vaihingen dataset.
Method Avg. F1 (%) | OA (%) | mloU (%) | Dice (%)

UNet 71.47 74.05 71.81 81.1
DeepLabv3 79.77 76.09 75.41 83.58
DANet 84.12 90.5 76.33 85.33
PSPNet 85.25 90.7 75.2 85.73

AFF-UNet 89.48 92.23 76.78 87.65
Proposed 90.90 93.17 77.69 89.5
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Table 3: Quantitative comparisons.

Method Per-class F1 score (%)

Buildings Roads Trees Cars
UNet 91.68 85.32 67.81 31.1
DeepLabv3 | 93.24 86.54 74.73 63.58
DANet 93.39 89.77 76.02 79.33
PSPNet 94.03 90.01 75.25 83.73
AFF-UNet | 95.86 92.43 79.78 88.85
Proposed | 96.22 93.2 79.69 91.5

In addition to the quantitative evaluation 2,3, a more in-depth qualitative comparison was also
conducted to assess the visual performance of our proposed method in comparison to other
state-of-the-art approaches on the Vaihingen dataset. This analysis 4 was meticulously de-
signed to focus on three key aspects: segmenting confused object classes, segmenting differ-
ent sizes of object classes, and maintaining the overall integrity of objects.

The first aspect, segmenting confused object classes, is a challenging task due to the sim-
ilarities between certain classes. In this regard, UNet was observed to have obvious false
segmentations, misidentifying impervious surfaces and vehicles as the background class. This
indicates a lack of discriminative power in the model to differentiate between similar classes.
DeeplLabv3, DANet, and PSPNet also exhibited similar issues, suggesting a common chal-
lenge across these models. However, AFF-UNet demonstrated good performance in avoid-
ing these misidentifications, indicating its superior discriminative ability. Our proposed method
consistently showed accurate segmentations with minimal confusion between classes, demon-
strating its robustness in handling class confusion.

The second aspect, segmenting different sizes of object classes, is crucial for maintaining the
granularity of the segmentation. UNet, DeepLabv3, DANet, and PSPNet were observed to be
unable to effectively consider the segmentation accuracy of both large and small-size objects,
leading to suboptimal results. This suggests a limitation in these models in handling objects
of varying sizes. In contrast, AFF-UNet showed improved segmentation accuracy for different
sizes of objects compared to the previous models, indicating its ability to handle size variations.
Our proposed method outperformed all models, effectively considering segmentation accuracy
for both large-size buildings and small-size vehicles, showcasing its versatility.

The third aspect, maintaining the overall integrity of objects, is essential for preserving the se-
mantic coherence of the segmentation. In this regard, AFF-UNet demonstrated better mainte-
nance of the integrity of object classes, especially for buildings, indicating its ability to preserve
object boundaries. UNet, DeepLabv3, DANet, and PSPNet, however, produced obvious errors
in the segmentation of buildings, resulting in fragmented results, suggesting a lack of spa-
tial coherence in these models. Our proposed method maintained object integrity well, even
in challenging scenarios, with results closely aligned with the ground truth, demonstrating its
robustness in preserving object integrity.

Overall, our proposed method consistently outperformed other comparison models in qualita-
tive aspects, showcasing improved performance in avoiding confusion, considering different
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object sizes, and maintaining object integrity. The success of our proposed model is attributed
to several innovative features such as dense skip connections, which allow for better infor-
mation flow; channel attention convolutional blocks, which enable the model to focus on rel-
evant features; adaptive fusion attention modules, which allow for better fusion of multi-scale
features; and spatial attention modules, which enable the model to focus on relevant spatial
locations.

Image Deeplabv3 DANet PSPMet AFF-UNet OTM-UNet

Figure 4: Visualization of the comparison experiments on the Vaihingen dataset.
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4.2 Ablation studies
4.2.1 Effect of the number of skip connections

In the first set of experiments 4, we varied the number of skip connections in the OTM-UNet
architecture. We evaluated three configurations: 1-SKIP, 2-SKIP, and 3-SKIP. The results in-
dicated that introducing an additional skip connection slightly improved both Average Overall
Accuracy (AO) and mean Intersection over Union (mloU) in the 2-SKIP configuration. How-
ever, further increasing the number of skip connections to 3-SKIP resulted in a minor decrease
in performance. This suggests that while skip connections enhance feature propagation and
information flow, their impact saturates beyond a certain point. Additionally, we observed a
linear increase in training time with the number of skip connections, emphasizing the trade-off
between improved accuracy and computational efficiency.

4.2.2 Effect of the number of Optimal Transport Maps (OTM)

In the second set of experiments 4, we examined the influence of optimal transport maps on
the OTM-UNet architecture. We compared configurations with 1-OTM and 2-OTM. The results
demonstrated that adding an extra optimal transport map 2-OTM led to notable improvements
in both AO and mloU. This highlights the effectiveness of OTM in enhancing feature alignment
across different scales. However, introducing an additional OTM significantly increased training
time, suggesting a trade-off between improved segmentation performance and computational
efficiency.

Table 4: Evaluation metrics results of ablation experiments on the Vaihingen dataset with
different configurations of the network.

Model AO (%) | mloU (%) | Training Time
1-SKIP 93.17 77.69 -
2-SKIP 93.26 77.72 ~ x1.3
3-SKIP 92.05 76.54 ~ x1.7
1-OTM 93.17 77.69 -
2-0T™M 93.82 78.23 ~ x1.8

4.2.3 Model complexity and the stability

In our experiments, with the same hardware environment and the same amount of training
data, Our model has demonstrated significant improvements in several key areas:

» Reduced Category Confusion: The model has successfully avoided confusion in defining
categories. This improvement has allowed for more accurate classifications and predic-
tions, thus raising the efficiency of model functioning.

» Improved Segmentation Results for Different Sizes of Targets: The model can segment
the targets with different sizes. This optimization ensures that the model can detect and
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delineate targets regardless of their scale facilitating its suitability in a broad range of
datasets.

« 3. Improved Target Integrity: The model has also enhanced the integrity of the targets.
This entails that the model is superior in terms of sustaining completeness and unity,
which are important for preserving meaningfulness or relevance among segmented tar-
gets.

These improvements reflect the advantages of our model in dealing with challenging aerial
image semantic segmentation tasks and ensuring high-accuracy results. 5,6 illustrates the
trend of accuracy and loss validations on the Vaihingen dataset.
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Figure 5: Validation Accuracy.

1.9

1.8

I
o

225 200 375 450
Epochs

Figure 6: Loss Validation.

4.2.4 Experiment results on SDD dataset

To demonstrate the generalization ability of OTM-UNet, we train our model on the Seman-
tic Drone Dataset (SDD), a task that involves semantic segmentation for aerial imagery. The
results obtained underscore the effectiveness of OTM-UNet in this context, with notable perfor-
mance metrics. The achieved Average F1 score of 91.85% reflects the model’s precision and
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recall balance, while the Overall Accuracy (OA) reaches an impressive 94.03%, highlighting the
model’s proficiency in correctly classifying pixels across diverse drone images. Moreover, the
mean Intersection over Union (mloU) score of 81.62% indicates the model’'s accuracy in delin-
eating object boundaries. Notably, the Dice coefficient attains a high value of 91.15%, further
emphasizing the precision of segmentation outcomes. These results collectively demonstrate
the OTM-UNet robustness and efficacy in achieving superior semantic segmentation perfor-
mance on aerial imagery from the Semantic Drone Dataset.

5 Conclusion

This study presents the OTM-UNet, a novel semantic segmentation architecture designed to
address small object detection in aerial imagery. Leveraging learned optimal transport maps,
our model demonstrated its ability to align both encoder and decoder feature maps to achieve
better spatial alignment and semantic consistency during sampling. The improved U-net archi-
tecture with optimal transport layers addressed a persistent problem in the identification and
segmentation of small objects in the scenes. The precise feature alignment mechanism proved
critical to the successful transfer of information, resulting in a better appreciation of spatial de-
tail across the architecture. The ability of OTM-UNet to overcome these limitations makes it a
reliable solution for applications where accurate and well-defined segmentation in an aerial im-
age is highly desired. What these contributions have achieved in this paper goes beyond simply
advancing the field of semantic segmentation, but also provides significant insight into address-
ing specific challenges in detecting and segmenting small objects in remote sensing. However,
with additional efforts in the research process, the innovative features and approaches incor-
porated in OTM-UNet will significantly benefit the existing deep learning methods for remote
sensing applications.

Data Availability Statement

We utilize open data from the following datasets:

Vaihingen dataset: https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-vaihingen.aspx. Semantic segmentation drone dataset: https://www.
tugraz.at/index.php?id=22387
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