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ABSTRACT

Dengue Hemorrhagic Fever (DHF) has spread rapidly to all regions of the world in recent 
years and now, based on the 2023 WHO report, has become endemic in more than 100 
countries in the WHO Region in Africa, the Eastern Mediterranean, the Americas, the 
Western Pacific and Southeast Asia. One way to anticipate further spread is to prevent and 
control the reproduction cycle of dengue vectors such as Aedes aegypti and Aedes 
albopictus. For this purpose, a prototype was designed of a mosquito egg trap, known as an 
ovitrap, which can automatically count the number of eggs trapped in it and can be monitored 
remotely using current technology called Internet of Things (IoT). The prototype was 
successfully constructed along with a proposed new digital image processing algorithm and 
an automatic egg counting system. In a real experimental environment, the IoT-ovitrap was 
used to count the number of eggs in a sample and achieved the best MAPE score using the 
proposed fusion method at 2.21% with a standard deviation of 3.93.
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1. INTRODUCTION

Mosquitoes are infamous for their role as a vector of various diseases, among which dengue fever 

(DF) and dengue hemorrhagic fever (DHF) caused by the dengue virus (Candra, 2010). The vectors 

of this virus come from the Aedes genus, mainly Aedes aegypti and to a lesser extent Aedes 
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albopictus (Jorge et al., 2019; Redaksi, 2010; WHO, 2014). Aedes aegypti features a small, black 

body with a typical white circle pattern on the legs and a silvery hue on the upper body (Jorge et al., 

2019; Redaksi, 2010). 

In the last few years, dengue has spread out quickly over all WHO regions, with Asian and Latin 

American countries as the most affected countries. This viral disease has developed into a primary

cause of hospitalization and death along with children and adults (WHO, 2023). WHO also reported 

that the number of registered dengue cases had increased about eight-fold over the preceding two 

decades, with the number of deaths between the years 2000 and 2015 increasing from 960 to 4032 

(WHO, 2014).

As a tropical country, Indonesia is considered one of many countries that are endemic to DF (WHO,

2014). Data from the Indonesian Ministry of Health show that the incidence rate (IR) of DHF in 

Indonesia from 1968 to 2020 always fluctuated but tended to increase (Ministry of Health of the 

Republic of Indonesia, 2016). For example, according to data from 2011 to 2020, the IR ranged from 

24.8 (2016) to 78.9 (2018) cases per 100,000 people. In 2020, there were 108,303 cases. This 

number was a decrease compared to 2019 with 138,127 cases. In line with the number of cases, 

deaths due to DHF decreased from 919 to 747 in 2020. Nonetheless, the national average case 

fatality rate (CFR) remains alarming at 0.70% (Ministry of Health of the Republic of Indonesia, 2016). 

This situation outlines the need for preventive action to prevent the outbreak from becoming worse.

Vector surveillance is a preventive action that is crucial in controlling and preventing the occurrence of 

DF (World Health Organization, 2019). Preventive action can be used to determine some factors 

related to dengue transmission, such as the distribution, population density, and larval habitats of the 

mosquitoes (World Health Organization, 2011). Some of the vector surveillance methods that are 

commonly used for both research and disease prevention are ovitrap survey, larval survey, pupae 

survey, and adult survey (Hotez et al., 2007; VDCI Mosquito Management).

An ovitrap is a device that is widely used in mosquito surveillance to attract mosquitoes to lay their 

eggs inside it, either for research purposes or for vector control (CDC, 2016). Generally, it consists of 

a black container with a thin cloth as a medium for mosquitoes to lay their eggs, some water, and an 

attractant such as hay infusion to bait the mosquitoes (CDC, 2016; Velo, 2016; Polson et al., 2016). 

Ovitraps are inexpensive, easy to use, and offer a great deal of insight regarding mosquitoes as the

disease vector by providing data for indexes such as the pupae index, ovitrap index, positive house 

index, and ovitrap density index (Focks, 2004; Sasmita et al., 2021). Ovitraps are used in many 

countries, for example, Hong Kong, Singapore, Taiwan, and Australia (Sasmita et al. 2021; Lee and 

Fok, 2008; Ooi et al., 2006; Ritchie et al., 2004). However, conventional ovitraps suffer from several 

disadvantages, one of which is the process of egg counting in the laboratory, which takes a long time 

and a hard effort. The ability to accurately count mosquito eggs requires skill in using a microscope 
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and distinguishing debris from eggs. Furthermore, trained personnel are needed to identify 

mosquitoes from larvae that hatch from mosquito eggs in an ovitrap in the laboratory (CDC, 2016). 

These issues occur especially in areas that have limited facilities (Caputo, 2020; Vasconcelos, 2019;

Townson, 2005; Hay et al., 2010). Another disadvantage of using ovitraps, is that data is commonly 

collected only weekly and not in real time, which may be too late if there is an outbreak. With IoT, it is 

possible to monitor the number of mosquito eggs in real time for a large area so that preventive 

measures to control mosquitoes can be carried out before a dengue outbreak. This creates the

rationale to integrate conventional ovitraps with an automatic counting system and to connect them 

through IoT. The use of an automatic counting system will reduce the need to count the eggs 

manually, whilst the IoT system will enable the ovitraps to be operated as well as monitored remotely

by users over the network. Furthermore, it will facilitate the ovitraps to store the counting data on a

cloud server and visualize them via internet.

Several methods have been developed to automatically count mosquito eggs. In 2016, Gaburro et al. 

developed the ICount software using a high-resolution camera mounted on a microscope (Gaburro et

al., 2016). Although in principle there is no difference with manual counting, what is different is the 

speed of counting, the number of eggs counted, and the accuracy. Other methods have been

developed using digital image processing (Dembo et al., 2014; Mollahosseini et al., 2012; Da Silva et 

al., 2011). Meanwhile, Hamesse et al., 2023 developed the Ovitrap Monitor, which can count 

mosquito eggs automatically using digital image processing and report the results on the web 

(Hamesse et al., 2023). However, a limitation of this prototype is the small coverage area of its

automatic counting system, which cannot count eggs located outside the paddle stick. Recently, 

image processing techniques have been developed to distinguish Aedes aegypti and Aedes 

albopictus eggs for real-time applications (Gunara et al., 2023).

This paper presents two innovations of the ovitrap design. The first contribution is a new image 

processing algorithm to support the automatic egg counting algorithm. The second is the incorporation 

of IoT to facilitate forwarding the data to a database system for further analysis and interconnection 

with other application systems. The materials and methods section will discuss the ovitrap design and 

the image pre-processing procedure. Section three explains the automatic egg counting system and

the integration of the ovitraps in IoT. Section four provides a discussion of the experimental result 

obtained by using the ovitrap equipped with IoT. The last section gives our conclusions.

2. MATERIALS AND METHODS

This work required obtaining a great number of repetitions of samples giving a response to the same 

known theoretical model. However, as the theoretical model was unknown, Monte-Carlo simulation 

was used with the input data generated by a computer according to a fixed theoretical model.
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2.1. Ovitrap Design

In general, there are three different positions for mosquitoes to organize their eggs (Shragai et al.,

2018; Day, 2016). The types of ovopositions are: individually pasted above the water line (Aedes sp

mosquito genus), in rafts on the water (Culex sp mosquito genus), and individually floating on the

water surface (Anopheles sp mosquito genus). The following figures, Figure 1(a) to 1(c) show the 

ovopositions of Aedes sp, Culex sp, and Anopheles sp mosquitoes, respectively, where each genus 

has a different ovoposition preference.

      (a)      (b)          (c)

Figure 1. Ovopositions of mosquitoes: (a) Aedes, (b) Culex, (c) Anopheles. Source: 
(a) https://ecommons.cornell.edu,
(b) http://bugoftheweek.com/blog/2014/5/26/there-will-be-blood-

mosquitoesculicidae,
(c) https://media.sciencephoto.com/image/c0234413/800wm

The main objective of the present research was to monitor Aedes sp mosquitoes. In this case, the 

design was focused on modifying the ovitrap, where it functions to lure Aedes sp mosquitoes to lay 

their eggs inside the trap whilst providing a good angle for a camera to take pictures of the eggs for 

further image processing. The developed ovitrap design consists of a black container, a black 

Alvaboard to attach the egg trap cloth to (Figure 2(a)), and a white spandex cloth as a medium for the 

mosquitoes to lay their eggs on. The use of the color black is based on the host-seeking behavior of

mosquitoes, who tend to be attracted by dark and low-reflective color surfaces, especially black (Hoel 

et al., 2011). A lid was built on top of the ovitrap to prevent unwanted objects, such as debris, from 

entering (Figure 2 (b)). Alongside it, a Pi camera connected to a Raspberry pi mini-computer was

placed in the ovitrap for capturing images of the eggs.

To prevent the water inside the ovitrap from overflowing on rainy days, a drainage system was made, 

consisting of two holes on each side of the ovitrap (Figure 2(c)). The holes also have a secondary 

function as an alternative way for mosquitoes to enter the ovitrap. Overall, the hardware design was 

successful in attracting mosquito to lay their eggs inside the ovitrap. However, a downside is that it 

might be invaded by unwanted insects or debris from the outside. These kinds of unwanted things 

could severely affect the accuracy of the automatic counting process. Therefore, in this paper, the 

prototype was given a treatment before the automatic counting process started by cleaning out any 

unwanted objects without interfering with the eggs.
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                       (a)                     (b)                        (c)

Figure 2. (a) Spandex cloth attached to the Alvaboard, (b) the ovitrap lid, and (c) drainage hole 
in the ovitrap.

2.2. Image Processing System and Image Pre-processing

In this paper, the number of eggs within the prototype was calculated using the OpenCV library. First, 

an image pre-processing algorithm was designed. The purpose of this operation is to change the input 

image format from RGB to binary (black and white) and suppress noise in the image so that the 

accuracy of the calculation is improved. After that the counting system was designed and the 

accuracy of the results was calculated. The image pre-processing operation consists of four steps as 

expressed in the algorithm below:

Algorithm 1: Image pre-processing

Input : Image from the camera

Output :

1) The input image format is changed from RGB to grayscale format for the thresholding

operation.

2) The thresholding operation is accomplished on the image with an image in binary format as 

output.

3) The opening operation is performed on the image to reduce any existing noise in the image 

and separate any connected objects due to the proximity of eggs.

4) A noise-cleaning process is performed by setting a minimum pixel limit value; objects with 

value below the limit will be considered noise and removed. 

After this series of processes is completed, the image is forwarded to the calculation process.

2.3. Binary-Inverse Thresholding

Thresholding is a segmentation method used frequently in image processing. This method can be 

used to separate an area in an image to be further investigated. In this paper, the thresholding

method used is inverse-binary thresholding. This technique is the opposite of binary thresholding,

where any pixels that have a value above the threshold rate will be converted to 0 (black) and

otherwise to 1 (white). To be able to apply the function, the image first needs to be converted to

grayscale. The binary-inverse thresholding operation can be written as follows (OpenCV, 2022):
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� � � �0, , Threshold
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max ,Otherwise

src x y
dst x y

val
� �

� �
�

(1)

where � �,src x y represents the resource image and � �,dst x y denotes the target image.

Another definition of thresholding, as explained in (Sahoo et al.,1988; Siswoyo et al., 2022), is the

following: let N be the set of natural numbers, � �,x y the spatial coordinates of a digitized image, 

and � �0,1, 1G I� 	 � a set of positive integers signifying gray levels. Afterward, an image function 

can be expressed as the mapping :f N N G
 � . The brightness (i.e., gray level) of a pixel with 

coordinates � �,x y is represented as � �,f x y .

Let t G� be the threshold and 
 �0 1,B b b� be a pair of binary gray levels, where 0 1,b b G� . The 

result of thresholding an image function � �f � � at gray level t is a binary image function 

:tf N N B
 � , such that

� � � �0

1

,  ,
,

,  Otherwise
t

b if f x y T
f x y

b
��

� �
�

(2)

To get a clean output image from the thresholding operation, the threshold value has to be optimized. 

The value of the threshold parameters was searched manually by taking an image of the ovitrap 

sample, iterating the threshold with different parameter values and counting the number of eggs both 

manually and using the connected components function. The accuracy was then found by using the

absolute percentage error (APE) formula. The formula for the iterations can be written as follows:

� � 100 20Z i i� 	 (3)

where ( ) Treshold valueZ i � at the i -th iteration and ( ) 0Z i � .

The value of 100 was chosen as the initial iteration parameter under the consideration that there 

would be too much noise generated if a higher value was used. From the iterations, a range of 

parameter value results was found that produces an image with minimum noise and can display all 

the mosquito eggs contained in the image. The optimal initial parameter range was found to be 

between 60 and 40. Furthermore, from this initial range, a further iteration was carried out after

reducing the subtraction constant from 20 to 5. The result was a new, more optimal range with a value 

between 40 and 55.

After obtaining the new upper and lower value ranges of the threshold, further optimization of these 

parameters was carried out by iterating the egg count automatically using the connected components
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function at each value in the parameter range and then calculating the counting accuracy value by 

comparing it to the actual number of mosquito eggs in the sample used. The accuracy of the 

automatic counting results was calculated using the formula for absolute percentage error and relative 

accuracy as follows:

� �
ˆ

ˆAPE , .100%
i i

i i
i

y y
y y

y
	

� (4)

Relative accuracy = 100% - APE, where ˆiy = the result of the automatic counting of eggs from the i -

th sample, iy = the result of counting eggs manually from i samples. After doing the iterations, the 

optimal threshold value was found to be 53. Figure 3 below shows the correlation between the 

threshold value and the accuracy score.

Figure 3. Threshold value chart.

2.4. Opening

The next step after applying the binary-inverse thresholding operation was executing the opening 

operation. Opening is a morphological operation feature of OpenCV that is a combination of erosion 

followed by dilation. This operation is usually performed on binary images, although it can also be 

used on grayscale images. Generally speaking, the opening operation smoothes the contour of an 

object, breaks narrow isthmuses, and removes thin protrusions.

Erosion is a process that convolutes an image using a kernel. A kernel is an area that can be utilized 

in many forms, such as a square, a circle, and so on. It also has an anchor point, which is usually 

located in the middle of the kernel area. When the operation starts, the kernel scans the original 

image. If the value of all pixels covered by the kernel area is 1 (white) or 0 (dark) then the image will 

be left in its original form. However, if it contains both 0 and 1 then its value will be converted to 0 at

the anchor point of the kernel. This results in the light areas of the image becoming thinner while the 

dark areas of the image becoming thicker (Figure 4(c)). The dilation operation is the reverse of the 

erosion operation. It makes the light areas of the image become thicker and vice versa (Figure 4(d)). 
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Thus, the output object of the opening operation becoming thinner because of the erosion operation is 

reversed whilst the noise in the image is reduced.

                       (a) (b)                                      (c)                                     (d)

Figure 4. Opening operation: (a) source image, (b) image after binary-inverse thresholding, (c) 
image after erosion, (d) image after dilation.

The opening of set A by arranging element B, designated by A ⸰ B, is stated as:

� �A B A BB� ���� ! which has the following geometrical interpretation: the opening of A by B is the 

union of all the translations of B so that B fits entirely in A.

2.5. Noise Elimination

After the threshold and opening operations have been executed, the next step in the image pre-

processing phase is noise elimination. Noise elimination is an operation that deletes objects above a

minimum pixel size. The purpose of this is to eliminate objects with a small size, which are most likely 

noise. First, the minimum pixel value must be set. This is done by selecting several image samples 

that have different numbers of mosquito eggs or come from different ovitraps and then performing the 

thresholding and opening operations on the image. After that, the sizes of all objects in the sample 

image are checked using the connected components function. After obtaining the size data of each 

object, the noise elements are searched by manually checking the sizes and positions of the objects 

based on the information provided from the connected components function. The noise elements can 

be identified based on their size, which most likely is tiny compared to that of the other elements in the 

image.

2.6. Egg Counting Methods

In this work, three counting methods were designed to be used later in the mosquito egg counting 

system. These counting methods are the estimation method, the connected components method, and 

a combination of the estimation and the connected components function. Out of these methods, the 

best method was selected to be used as the main counting system for the prototype. A treatment was 

given to the prototype, i.e., the ovitrap was cleaned from any unwanted object except the mosquito 

eggs.
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3. RESULTS AND DISCUSSIONS

3.1. Estimation Method

The egg counting system is carried out by dividing the total area of the object contained in the pre-

processed image by the average area of a mosquito image that has been calculated first (Mello et al.,

2008; Bandong et al., 2019). In this case, all objects in the input image are assumed to be mosquito 

eggs. The total area is computed based on the number of white pixels in the image after doing the 

pre-processing operation to the input image. Below is the explanation of this algorithm.

Algorithm 2: Estimation Method

Input : Image taken from the camera

Output : Counting result

1. Take the ovitrap sample with the most eggs.

2. Count the eggs manually.

3. Perform binary-inverse thresholding on the sample image.

4. Calculate the object area of the sample image.

5. Divide the object area by the number of eggs (stored as � ). 

6. Perform image pre-processing.

7. Calculate the white pixel area of the input image (stored as A ).

8. Divide ( A ) by (� ).

In this method, first, an estimation of the average area of the mosquito eggs (ᾱ) is calculated. This is 

done by taking an image of the ovitrap sample that has the most mosquito eggs, pre-processing the 

image and then dividing the area of the object in the image by the actual number of mosquito eggs.

The formula of � can be written as:

A
N

� � (5)

where: A = the total pixel area of mosquito eggs, N = the actual number of mosquito eggs, � = the 

average pixel size of the mosquito eggs. The sample used to find the value of � was sample number 

10 in Table 1. From the calculations, the value of � was found to be 66.6 pixels. After obtaining the 

value of � , the method was used to count the eggs in the input image after applying the pre-

processing operations to it.

The number of eggs was calculated by means of the following formula:

AN
�

� (6)
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where N = the estimated number of mosquito eggs. The result of the estimation method is shown in

Table 1. From this method, the relative accuracy was found to be 74.26%. However, this result was 

still far from our goal of around 90% accuracy.

There are several factors that caused this low accuracy score: 

1. Different egg sizes. The difference between the value of ᾱ and the pixel size of each mosquito 

egg results in a significantly lower accuracy of the method.

2. Uneven light intensity in the ovitrap. The uneven intensity of light, especially between the 

center and the edge area of the egg trap, affects the image size of the eggs in the image,

where eggs that get less light intensity will have a smaller size in the image. This makes the 

resulting pixel size of the egg image disproportionate.

3. Effect of embryogenesis. When the eggs are exposed to water, embryogenesis will occur. 

This results in the production of extracellular matrix cells, which results in enlargement of the 

volume and thickening of the eggshell (Indonesia Ministry of Health, 2018).

4. Side effects of the threshold and opening operations. When the input image is pre-processed 

with the thresholding and opening operations, the output image become smaller in size. This 

effect contributes to a lower accuracy of the counting method.

3.2. Connected Components Method

To increase the accuracy of the counting system, a novel method is proposed in this paper. This 

method uses a connected component function to count the number of objects in the picture. 

Connected components is a function of the OpenCV module that is widely used in the segmentation

and identification of binary images. This function can also be used in detecting and counting objects in

an image (Dharpure, 2013). It consists of an algorithm that can be used to check whether two or more 

objects in an image are connected based on the pixel connectivity between these objects. Pixel 

connectivity can be interpreted as a condition that makes two or more pixels connected, for example 

based on spatial distance and pixel brightness (Fisher et al., 2000).

The connected components function itself can be defined as in (Di Stefano, 1999). Let I be a binary 

image and F and B , the subsets of I that contain the foreground and background pixels

respectively. The connected components in I , here denoted to as C , are a subset of F of maximal 

size, meaning that all pixels in C are connected. Two pixels, P and Q , are connected if there exists 

a path of pixels � �0 1; np p p �n such that 0p P� , np Q� , and 11 ; ii n p 	� � � and ip are

neighbors. Consequently, the definition of connected components depends on that of a pixel’s 

neighborhood: if this includes four neighbors, C is said to be four-connected. Assuming that a pixel 

has eight neighbors, C is said to be eight-connected. The mechanism of the connected components

work is described in (He et al., 2017). The algorithm of the counting system is expressed as follows:
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Algorithm 3: Connected Components Method

Input : Image taken by the camera

Output : Counting result

1. Pre-process the image.

2. Apply the connected components function.

3. Count the results.

After executing the pre-processing procedure on the input image, the mosquito eggs in the image 

were counted using this method. The counting result is shown in Table 2, which shows that the 

accuracy score for this counting method was far superior to that of the previous method. This was 

because the variety in egg size does not affect the counting process of this method, while pixel 

connectivity plays a big role in deciding which objects in the image are considered single mosquito 

eggs.

However, this method has a weakness. It cannot count the exact number of eggs that coincide or are

very close to each other. As can be seen from samples 13 and 14 in the table, the accuracy 

decreased significantly when the image contained some coinciding and very closely positioned eggs. 

These objects will be counted as one egg by this method, as the connected components algorithm

cannot differentiate them. To tackle this problem, another counting method that can count individual 

eggs along with coinciding eggs was designed.

3.3. Fusion Method

A new counting method, called the fusion method, is proposed here to count individual eggs along 

with coinciding eggs and eggs that are positioned close to each other. This method is called ‘fusion’

method because it combines the two methods described above, i.e., the estimation and the connected 

components method. In the fusion method, coinciding eggs are counted by using the estimation 

method, while the rest are counted using the connected components method. The algorithm of the 

method is shown below.

Algorithm 4: Fusion Method

Input : Image taken by the camera

Output : Counting result

1. Pre-process the image.

2. Apply the estimation method to overlapping eggs (stored as � ).

3. Apply the connected components method to non-overlapping eggs (stored as � ).

4. Sum the results of the estimation and the connected components method (� �� ).

A workflow diagram of the fusion method is shown in Figure 5.
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Figure 5. Fusion method workflow diagram.

In the fusion method, the first step is to estimate the value of � . This parameter is the estimation of 

the pixel size of an egg when it is adjacent to other eggs. In this research, the value � was found by 

choosing the largest coinciding egg pixel size and then dividing it by the actual number of coinciding 

eggs. The formula of � can be written as:

B
M

� � (7)

where B denotes the total pixel area of the selected coinciding mosquito eggs, M is the actual 

number of coinciding mosquito eggs, and � denotes the estimated pixel size of the coinciding 

mosquito eggs.

After � has been found, the size of every object in the image is scanned. Objects with pixel 

size >100 pixel are assumed to be coinciding eggs and then separated from the original picture. The 

use of 100 pixels as the minimum value is based on the sample image that has previously been 

scanned for objects. After this, the separated objects are counted by dividing their pixel size by � .

The result is then saved as variable � . The rest of the objects are then counted by using the 

connected components method and the result is saved as variable � . Finally, the total number of 

Start

Objects with size >100 pixel are separated from the original image and 
the value of � is counted.

End

Execute the pre-processing system on 
the input image

Count the rest of the eggs by using 
connected components �

Eggs total = � ��

Count the number of eggs within the separated 
picture by dividing the total area by � (� )
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eggs can be calculated by adding the values of � and � . The final result of this counting method 

can be written as follows:

� � � �� (8)

where � = the total number of eggs, � = the estimated number of coinciding eggs, and � = the 

number of normal eggs. In this paper, the value of � was found to be 93 pixels. The calculation 

results and the accuracy of this method are shown in Table 3. The result of the estimation, the 

connected components method, and the fusion method yielded a MAPE value of 25.74%, 4.08%, and 

2.21%, respectively. From there, it can be inferred that the fusion method’s accuracy was the highest 

among these three methods.

3.4. Design of the System Architecture & IoT

The Internet of Things (IoT) has grown in popularity and has been combined with algorithms based on 

artificial intelligence (AI) to obtain systems capable of handling complex problems (Téllez et al., 2018; 

Alshehri and Muhammad, 2020; Sihombing et al., 2021; Suratkar et al., 2021). Figure 6 illustrates the 

components of the IoT system developed in this research. The prototype used a micro-computer as 

the computing system and a camera attached to the upper lid of the ovitrap to take mosquito egg

images. 

(a) (b)

Figure 6. (a) System architecture, (b) prototype workflow diagram.
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The IoT system facilitates the ovitraps and their microcomputer to be interconnected over the internet. 

Figure 7(a) shows the architecture of the IoT system of the prototype. This feature allows users to

operate the ovitraps and monitor the egg abundance in the surveillance area in real-time via internet,

where the counting data are stored in a cloud database and visualized as shown in Figure 7 (b).

(a)                                                                    (b)

Figure 7. (a) IoT system architecture, (b) system dashboard.

4. DISCUSSION

The designed prototype along with its systems was tested by placing it in a house yard and checking 

it regularly on a weekly basis. The checking process consisted of egg counting – both automatically

and manually – and the disposal of the eggs and any present larvae. From the technical side, by 

using the designed prototype along with the automatic counting system, the burden of counting 

mosquito eggs manually is eliminated, as there is no need to use trained personnel or laboratory 

facilities such as a microscope anymore. It is also worth noting that the time-consuming procedure of

using conventional ovitraps is eased.

Figures 8(a) and (b) show a performance comparison of each method and an APE value boxplot of all 

counting method results. It shows that the estimation, connected components, and fusion methods

yielded a MAPE value of 25.74%, 4.08%, and 2.21%, respectively. The fusion method was the most 

accurate method due to its ability to accurately count adjacent and/or coinciding eggs as well as 

individual eggs. It counts individual eggs by using the connected components function and coinciding 

eggs by using the estimation method separately. The only downside of this method is that it cannot 

count the exact number of coinciding eggs as it is very dependent on the shape of the coinciding eggs. 

If the value of � is set too high or too low compared to the size of the coinciding eggs, then the 

accuracy of this method is low. However, it must be noted that the prototype was treated before the 

counting process by cleaning the spandex cloth from any unwanted objects such as debris and 

insects.

Egg Number & Ovitrap locationOV-Trap

Server

Dashboard

Database

User
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(a) (b)

Figure 8. (a) Performance comparison, (b) APE boxplot of all counting methods.

4. CONCLUSIONS

This paper proposed a prototype mosquito egg trap with an automatic counting system. The prototype 

consisted of an ovitrap, a mini-computer, and a camera connected to each other in an IoT system. 

This prototype worked by attracting mosquitoes to lay eggs in it, taking pictures of the eggs inside,

and then automatically counting the number of eggs using the designed egg counting system. Three

automatic egg counting methods were designed, namely the estimation method, the connected 

components method, and a fusion method. The latter is a combination of the connected components 

method for separate eggs and the estimation method for eggs that coincide with each other. The 

proposed method had an accuracy rate of 97.79%. To operate the prototype, the user must first 

connect to the ovitrap via Wi-Fi and then access a dashboard where commands are available to take 

pictures of the eggs in the ovitrap, and count and visualize them. 

An Internet of Things (IoT) based ovitrap has great potential in monitoring and controlling dengue 

fever nationally and globally with various benefits. Ovitraps combined with IoT can monitor mosquito 

eggs in real-time to count them and measure environmental conditions to monitor the development of 

Aedes aegypti mosquitoes. This tool can predict the possible spread of dengue fever by analyzing 

egg growth and environmental data to identify high-risk areas and provide recommendations or

solutions quickly. An early warning system can provide information to the public regarding the risk of 

spreading dengue fever in risk areas. The system can optimize the placement of ovitraps based on 

the data that has been collected. The public can connect to the system so that there is community 

involvement through the use of mobile applications or online platforms to report and obtain information 

quickly. This tool can also be used to optimize resource use by increasing the efficiency of larvicide 

use and vector control measures using the ovitraps. Collaboration between countries can be
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implemented to support global data exchange to provide more effective early warnings of possible 

dengue fever outbreaks. It is hoped that the application of this technology can increase the 

effectiveness of efforts to prevent dengue fever nationally and globally.
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APPENDIX

Table 1: Estimation method results for � = 66.6 Table 2: Connected components results

Nr. Actual 
Number Result APE

Relative 
Accuracy 

(%)
1 6 5 16.67 83.33
2 16 11 31.25 68.75
3 17 9 47.06 52.94
4 19 20 5.26 94.74
5 22 9 59.09 40.91
6 27 15 44.44 55.56
7 29 15 48.28 51.72
8 50 46 8.00 92.00
9 70 47 32.86 67.14

10 71 68 4.23 95.77
11 83 62 25.30 74.70
12 84 60 28.57 71.43
13 107 117 9.35 90.65
14 110 110 0.00 100

Average (%) 25.74 74.26
Standard Deviation of 

Relative Accuracy
19.06

Nr. Actual 
Number Result APE

Relative 
Accuracy 

(%)
1 6 6 0.00 100.00
2 16 15 6.25 93.75
3 17 17 0.00 100.00
4 19 19 0.00 100.00
5 22 21 4.55 95.45
6 27 27 0.00 100.00
7 29 25 13.79 86.21
8 50 52 4.00 96.00
9 70 70 0.00 100.00

10 71 69 2.82 97.18
11 83 83 0.00 100.00
12 84 84 0.00 100.00
13 107 96 10.28 89.72
14 110 93 15.45 84.55

Average (%) 4.08 95.92
Standard Deviation of 

Relative Accuracy
5.44

Table 3: Fusion method results with � = 93.
 

Nr. Actual 
Number Result APE

Relative 
Accuracy 

(%)
1 6 6 0.00 100.00
2 16 15 6.25 93.75
3 17 17 0.00 100.00
4 19 19 0.00 100.00
5 22 21 4.55 95.45
6 27 27 0.00 100.00
7 29 25 13.79 86.21
8 50 52 4.00 96.00
9 70 70 0.00 100.00
10 71 72 1.41 98.59
11 83 83 0.00 100.00
12 84 84 0.00 100.00
13 107 107 0.00 100.00
14 110 109 0.91 99.09

Average (%) 2.21 97.79
Standard Deviation of 

Relative Accuracy
3.93
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