Open Access Open Access  Restricted Access Subscription or Fee Access

Riesz basis approach and exponential stabilization of a nonhomogeneous flexible beam with a tip mass

My Driss Aouragh, Naji Yebari


In this paper, we show that there is a sequence of generalized eigenfunctions of an Euler-Bernoulli beam equation with a tip mass which forms a Riesz basis for the state Hilbert space. Then the exponential stability of the system based on an asymptotic expression of eigenvalues is obtained. A numerical simulation of the spectrum is also presented.


Euler-Bernoulli beam Equation, Variable Coefficients, Asymptotic behavior, Riesz basis, Stability.

Full Text:


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.