Open Access Open Access  Restricted Access Subscription or Fee Access

Existence of a Minimizing Sequence of Trajectory-Control Pairs with Bounded Controls for Linear Control Problems

Alexander J. Zaslavski


In this paper we study two large classes of finite-dimensional linear control systems which are identified with the corresponding complete metric spaces of integrands satisfying a growth condition. For most elements of the first space of integrands (in the sense of Baire category) we establish the existence of a minimizing sequence of trajectory-control pairs with bounded controls. We also establish that for most elements of the second space (in the sense of Baire category) the infimum on the full admissible class of trajectory-control pairs is equal to the infimum on a subclass of trajectory-control pairs whose controls are bounded by a certain constant.

Full Text:


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.