Open Access Open Access  Restricted Access Subscription or Fee Access

Local linear estimate for functional regression with missing data at random

Abbassia Benchiha, Zoulikha Kaid

Abstract



In this paper, we consider the problem of the co-variability analysis between a functional variable X and a scalar response variable Y which is not totally observed. We use the local linear approach to model this relationship by constructing a local linear estimator of the regression operator when missing data occur in the response variable. Asymptotic results, in term of the pointwise almost complete consistencies, is established for the constructed estimator.

Keywords


Almost complete convergence, Kernel method, Local linear method, Regression operator.

Full Text:

PDF


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.